scholarly journals GEOPHYSICAL STUDIES AND TECTONISM OF THE HELLENIDES

2017 ◽  
Vol 43 (1) ◽  
pp. 32 ◽  
Author(s):  
J. Makris

By constraining gravity modelling by Deep Seismic Soundings (DSS) and the Bouguer gravity field of Greece a 3-D density-velocity model of the crust and upper mantle was developed. It was shown that in the north Aegean Trough and the Thermaikos Basins the sediments exceed 7 km in thickness. The basins along the western Hellenides and the coastal regions of western Greece are filled with sediments of up to 10 km thickness, including the Prepulia and Alpine metamorphic limestones. The thickest sedimentary series however, were mapped offshore southwest and southeast of Crete and are of the order of 12 to 14 km. The crust along western Greece and the Peloponnese ranges between 42 and 32 km thickness while the Aegean region is floored by a stretched continental crust varying between 24 to 26 km in the north and eastern parts and thins to only 16 km at the central Cretan Sea. The upper mantle below the Aegean Sea is occupied by a lithothermal system of low density (3.25 gr/cm³) and Vp velocity (7.7 km/s), which is associated with the subducted Ionian lithosphere below the Aegean Sea. Isostasy is generally maintained at crustal and subcrustal levels except for the compressional domain of western Greece and the transition between the Mediterranean Ridge and the continental backstop. The isotherms computed from the Heat Flow density data and the density model showed a significant uplift of the temperature field below the Aegean domain. The 400°C isotherm is encountered at less than 10 Km depth. Tectonic deformation is controlled by dextral wrench faulting in the Aegean domain, while western Greece is dominated by compression and crustal shortening. Strike-slip and normal faults accommodate the western Hellenic thrusts and the westwards sliding of the Alpine napes, using the Triassic evaporates as lubricants.

1966 ◽  
Vol 56 (1) ◽  
pp. 223-239 ◽  
Author(s):  
Michio Otsuka

abstract Arrays of seismographs are usually considered to be detectors which give enhanced signals from distant earthquakes. They also provide, however, a new way of learning more about the structure of the crust and upper mantle. The deviation of the seismic-wave surface from its expected configuration may be regarded as a consequence of non-homogeneous and anisotropic conditions in the earth. The operations of the University of California network of telemetry stations in the Coast Ranges of California provides an opportunity to discover the practicality of this approach. The situation of this network near the continental margin gives the study particular interest. The differences in arrival-times between array elements of coherent peaks or troughs of P and pP phases from 28 teleseisms in the period of 1963-1964 were read from the telemetry records of the central California seismographic array. The direction of approach and velocities of the wave fronts were then determined and compared with the great circle azimuths and with the apparent velocities calculated from the Jeffreys-Bullen tables. The observed anomalies in direction of approach and apparent velocites are found to be cyclic functions of the direction of the source. The amplitudes of these functions are almost 10 degrees in azimuth anomaly and 1.0 sec/deg in slowness anomaly. Error analyses show that the anomaly functions cannot be attributed to the measurement errors. The derived anomaly functions provide a powerful means of examining crustal and upper mantle structure under the array and perhaps at the source. Variations between subsets of the array indicate significant differences in structure between portions of the Coast Ranges to the north and to the south of Hollister.


2020 ◽  
Author(s):  
Antoine Haddad ◽  
Athanassios Ganas ◽  
Ioannis Kassaras ◽  
Matteo Lupi

<p>From July 2016 to May 2017, we deployed a local seismic network composed of 15 short-period seismic stations to investigate the ongoing seismotectonic deformation of Western Greece with emphasis on the region between Ambrakikos Gulf (to the north) and Kyparissia (to the south). The network was deployed to investigate the behavior of key crustal blocks in western Greece, such as the Ionian-Akarnania Block (IAB).</p><p>After applying automatic P- and S- wave phase picking we located 1200 local earthquakes using HypoInverse and constrained five 1D velocity model by applying the error minimization technique. Events were relocated using HypoDD and 76  focal mechanisms were computed for events with magnitudes down to M<sub>L</sub> 2.3 using first motion polarities.</p><p>We combined the calculated focal mechanisms and the relocated seismicity to shed light on the IAB block boundaries. Three boundaries highlighted by previous studies were also evidenced :</p><p>-The north-west margin of the block, the Cephalonia Transform Fault, Europe‘s most active fault. NW-striking dextral strike-slip motion was recognized for this fault near the Gulf of Myrtos and the town of Fiskardo.</p><p>- The south-east margin is the Movri-Amaliada right-lateral Fault Zone, activated during the Movri Mt. M<sub>w</sub> 6.4 earthquake sequence.</p><p>- The Ambrakikos Gulf (a young E-W rift) and the NW-striking left-lateral Katouna-Stamna Fault zone depict the north and north-eastern margins of the IAB block.</p><p>Seismicity lineaments and focal mechanisms define theKyllini-Cephalonia left-lateral fault, which is also highlighted by bathymetry data. We interpret this fault as the south-western margin of IAB separating an aseismic area observed between Cephalonia and Akarnania from a seismogenic zone north of Zakynthos Island and bridging NW Peloponnese with Cephalonia.</p>


2020 ◽  
Author(s):  
Yan Cai ◽  
Jianping Wu

<p>North China Craton is the oldest craton in the world. It contains the eastern, central and western part. Shanxi rift and Taihang mountain contribute the central part. With strong tectonic deformation and intense seismic activity, its crust-mantle deformation and deep structure have always been highly concerned. In recent years, China Earthquake Administration has deployed a dense temporary seismic array in North China. With the permanent and temporary stations, we obtained the crust-mantle S-wave velocity structure in the central North China Craton by using the joint inversion of receiver function and surface wave dispersion. The results show that the crustal thickness is thick in the north of the Shanxi rift (42km) and thin in the south (35km). Datong basin, located in the north of the rift, exhibits large-scale low-velocity anomalies in the middle-lower crust and upper mantle; the Taiyuan basin and Linfen basin, located in the central part, have high velocities in the lower crust and upper mantle; the Yuncheng basin, in the southern part, has low velocities in the lower crust and upper mantle velocities, but has a high-velocity layer below 80 km. We speculate that an upwelling channel beneath the west of the Datong basin caused the low velocity anomalies there. In the central part of the Shanxi rift, magmatic bottom intrusion occurred before the tension rifting, so that the heated lithosphere has enough time to cool down to form high velocity. Its current lithosphere with high temperature may indicate the future deformation and damage. There may be a hot lithospheric uplift in the south of the Shanxi rift, heating the crust and the lithospheric mantle. The high-velocity layer in its upper mantle suggests that the bottom of the lithosphere after the intrusion of the magma began to cool down.</p>


2020 ◽  
Author(s):  
Valentine Lefils ◽  
Alexis Rigo ◽  
Efthimios Sokos

<p>The North-Eastern zone of the Gulf of Corinth in Greece is characterized by the rotation of a micro-plate in formation. The Island Akarnanian Block (IAB) have been progressively individualized since the Pleistocene (less than ~ 1.5 My ago). This micro-plate is the result of a larger-scale tectonic context with, on one side the N-S extension of the Gulf of Corinth to the East, and on the other side the Hellenic subduction to the South and the Apulian collision to the West. To the Northeast, the IAB micro-plate is bounded by a large North-South sinistral strike-slip fault system, the Katouna-Stamna Fault (KSF) and by several normal faults. To the North, normal faults reach the limit between Apulian and Eurasian plates and to the East, they form the East-West graben of Trichonis lake.</p><p>Although the structures and dynamics behind the Gulf of Corinth extension are today relatively known, nevertheless, the set of faults linking the Gulf of Corinth to the Western subduction structures remain poorly studied. The seismicity recorded by the Greek national network shows discrepancies regarding to the faults mapped on the surface.</p><p>At the end of 2015, a new micro-seismicity campaign started with the deployment of a temporary seismological network in an area ranging from the Gulf of Patras to the Amvrakikos Gulf toward the North. This network includes 17 seismic stations, recording continuously, added to the permanent stations of the Corinth Rift Laboratory (CRL) and of the Hellenic Unified Seismic Network (HUSN).</p><p>The analysis of the seismological records is still in process for the 2016 and 2017 years. Our study consists first in picking the <em>P</em>- and <em>S</em>- waves, and then to precisely localize the seismic events recorded by our temporary seismological network combined with the permanent ones. We will present here the event location map obtained for the 2016-2017 period, a new seismic velocity model, and focal mechanisms. The seismic activity including thousands of events, is characterized by the presence of numerous clusters of few days to few weeks duration. The clusters are analysed in detail by relative relocations in order to appraise their physical processes and their implications in the fault activity. We will discuss the deformation mode of the region and build a seismotectonic model consistent with the regional geodynamics and observations.</p>


1998 ◽  
Vol 35 (11) ◽  
pp. 1238-1251 ◽  
Author(s):  
Deping Chian ◽  
François Marillier ◽  
Jeremy Hall ◽  
Garry Quinlan

New modelling of wide-angle reflection-refraction data of the Canadian Lithoprobe East profile 91-1 along the central mobile belt of the Newfoundland Appalachian orogen reveals new features of the upper mantle, and establishes links in the crust and upper mantle between existing land and marine wide-angle data sets by combining onshore-offshore recordings. The revised model provides detailed velocity structure in the 30-34 km thick crust and the top 30 km of upper mantle. The lower crust is characterized by a velocity of 6.6-6.8 km/s onshore, increasing by 0.2 km/s to the northeast offshore beneath the sedimentary basins. This seaward increase in velocity may be caused by intrusion of about 4 km of basic rocks into the lower crust during the extension that formed the overlying Carboniferous basins. The Moho is found at 34 km depth onshore, rising to 30 km offshore to the northeast with a local minimum of 27 km. The data confirm the absence of deep crustal roots under the central mobile belt of Newfoundland. Our long-range (up to 450 km offset) wide-angle data define a bulk velocity of 8.1-8.3 km/s within the upper 20 km of mantle. The data also contain strong reflective phases that can be correlated with two prominent mantle reflectors. The upper reflector is found at 50 km depth under central Newfoundland, rising abruptly towards the northeast where it reaches a minimum depth of 36 km. This reflector is associated with a thin layer (1-2 km) unlikely to coincide with a discontinuity with a large cross-boundary change in velocity. The lower reflector at 55-65 km depths is much stronger, and may have similar origins to reflections observed below the Appalachians in the Canadian Maritimes which are associated with a velocity increase to 8.5 km/s. Our data are insufficient for discriminating among various interpretations for the origins of these mantle reflectors.


2021 ◽  
Vol 40 (5) ◽  
pp. 16-32
Author(s):  
A.M. Petrishchevsky ◽  

Spatial distributions of gravity sources and density contrast of geological media, which is reflected by the values of parameter μz , into the crust and upper mantle of Northeast China are analyzed. Features of rheological layering of the tectonosphere and deep spatial relationships of tectonic structures (cratonic blocks, marginal terranes, and sedimentary basins) are defined. In the density contrast distributions the formal signs of Paleozoic subduction of the North-China Craton and Mesozoic subduction of the Pacific Plate under the Amurian Plate were revealed. Crustal deformations are in sharp contrast with upper mantle deformations in structural planes resulting from different directions of tectonic stresses in the Paleozoic and Mesozoic. Thrusting of marginal terranes (Jamusi, Khanka) over the Amurian Plate lithosphere is revealed. Rheology and deep structure of North East China bear many similarities to other regions of the Pacific western margin in Asia and Australia.


Sign in / Sign up

Export Citation Format

Share Document