scholarly journals Symmetric polynomials in the variety generated by Grassmann algebras

Author(s):  
Nazan Akdoğan ◽  
Şehmus Fındık

Let [Formula: see text] denote the variety generated by infinite-dimensional Grassmann algebras, i.e. the collection of all unitary associative algebras satisfying the identity [Formula: see text], where [Formula: see text]. Consider the free algebra [Formula: see text] in [Formula: see text] generated by [Formula: see text]. We call a polynomial [Formula: see text] symmetric if it is preserved under the action of the symmetric group [Formula: see text] on generators, i.e. [Formula: see text] for each permutation [Formula: see text]. The set of symmetric polynomials forms the subalgebra [Formula: see text] of invariants of the group [Formula: see text] in [Formula: see text]. The commutator ideal [Formula: see text] of the algebra [Formula: see text] has a natural left [Formula: see text]-module structure, and [Formula: see text] is a left [Formula: see text]-module. We give a finite free generating set for the [Formula: see text]-module [Formula: see text].

2021 ◽  
Vol 30 (2) ◽  
pp. 121-128
Author(s):  
NAZAN AKDOĞAN ◽  

"Let G be the infinite dimensional Grassmann algebra. In this study, we determine a subgroup of the automorphism group Aut(G) of the algebra G which is of an importance in the description of the group Aut(G). We give an infinite generating set for this subgroup and suggest an algorithm which shows how to express each automorphism as compositions of generating elements."


Author(s):  
Şehmus Fındık ◽  
Osman Kelekci̇

Let [Formula: see text] and [Formula: see text] be two generic traceless matrices of size [Formula: see text] with entries from a commutative associative polynomial algebra over a field [Formula: see text] of characteristic zero. Consider the associative unitary algebra [Formula: see text], and its Lie subalgebra [Formula: see text] generated by [Formula: see text] and [Formula: see text] over the field [Formula: see text]. It is well known that the center [Formula: see text] of [Formula: see text] is the polynomial algebra generated by the algebraically independent commuting elements [Formula: see text], [Formula: see text], [Formula: see text]. We call a polynomial [Formula: see text] symmetric, if [Formula: see text]. The set of symmetric polynomials is equal to the algebra [Formula: see text] of invariants of symmetric group [Formula: see text]. Similarly, we define the Lie algebra [Formula: see text] of symmetric polynomials in the Lie algebra [Formula: see text]. We give the description of the algebras [Formula: see text] and [Formula: see text], and we provide finite sets of free generators for [Formula: see text], and [Formula: see text] as [Formula: see text]-modules.


1987 ◽  
Vol 106 ◽  
pp. 143-162 ◽  
Author(s):  
Nobuaki Obata

The infinite symmetric group is the discrete group of all finite permutations of the set X of all natural numbers. Among discrete groups, it has distinctive features from the viewpoint of representation theory and harmonic analysis. First, it is one of the most typical ICC-groups as well as free groups and known to be a group of non-type I. Secondly, it is a locally finite group, namely, the inductive limit of usual symmetric groups . Furthermore it is contained in infinite dimensional classical groups GL(ξ), O(ξ) and U(ξ) and their representation theories are related each other.


2012 ◽  
Vol 19 (spec01) ◽  
pp. 905-911 ◽  
Author(s):  
Anuj Bishnoi ◽  
Sudesh K. Khanduja

A well known result of Schur states that if n is a positive integer and a0, a1,…,an are arbitrary integers with a0an coprime to n!, then the polynomial [Formula: see text] is irreducible over the field ℚ of rational numbers. In case each ai = 1, it is known that the Galois group of fn(x) over ℚ contains An, the alternating group on n letters. In this paper, we extend this result to a larger class of polynomials fn(x) which leads to the construction of trinomials of degree n for each n with Galois group Sn, the symmetric group on n letters.


2018 ◽  
Vol 25 (3) ◽  
pp. 451-459
Author(s):  
Huishi Li

AbstractLet {K\langle X\rangle=K\langle X_{1},\ldots,X_{n}\rangle} be the free algebra generated by {X=\{X_{1},\ldots,X_{n}\}} over a field K. It is shown that, with respect to any weighted {\mathbb{N}}-gradation attached to {K\langle X\rangle}, minimal homogeneous generating sets for finitely generated graded two-sided ideals of {K\langle X\rangle} can be algorithmically computed, and that if an ungraded two-sided ideal I of {K\langle X\rangle} has a finite Gröbner basis {{\mathcal{G}}} with respect to a graded monomial ordering on {K\langle X\rangle}, then a minimal standard basis for I can be computed via computing a minimal homogeneous generating set of the associated graded ideal {\langle\mathbf{LH}(I)\rangle}.


2007 ◽  
Vol 2007 ◽  
pp. 1-24 ◽  
Author(s):  
Abdenacer Makhlouf

The aim of this paper is to give an overview and to compare the different deformation theories of algebraic structures. In each case we describe the corresponding notions of degeneration and rigidity. We illustrate these notions by examples and give some general properties. The last part of this work shows how these notions help in the study of varieties of associative algebras. The first and popular deformation approach was introduced by M. Gerstenhaber for rings and algebras using formal power series. A noncommutative version was given by Pinczon and generalized by F. Nadaud. A more general approach called global deformation follows from a general theory by Schlessinger and was developed by A. Fialowski in order to deform infinite-dimensional nilpotent Lie algebras. In a nonstandard framework, M. Goze introduced the notion of perturbation for studying the rigidity of finite-dimensional complex Lie algebras. All these approaches share the common fact that we make an “extension” of the field. These theories may be applied to any multilinear structure. In this paper, we will be dealing with the category of associative algebras.


Author(s):  
Lucio Centrone ◽  
Chia Zargeh

AbstractLet L be an n-dimensional null-filiform Leibniz algebra over a field K. We consider a finite dimensional cocommutative Hopf algebra or a Taft algebra H and we describe the H-actions on L. Moreover we provide the set of H-identities and the description of the Sn-module structure of the relatively free algebra of L.


10.37236/438 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
François Bergeron ◽  
Aaron Lauve

We analyze the structure of the algebra $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action" of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. Résumé. Nous analysons la structure de l'algèbre $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions", on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle\mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensorial, obtenant ainsi un analogues des théorèmes classiques de Chevalley et Shephard-Todd.


2019 ◽  
Vol 18 (09) ◽  
pp. 1950162
Author(s):  
A. S. Gordienko

An algebra [Formula: see text] with a generalized [Formula: see text]-action is a generalization of an [Formula: see text]-module algebra where [Formula: see text] is just an associative algebra with [Formula: see text] and a relaxed compatibility condition between the multiplication in [Formula: see text] and the [Formula: see text]-action on [Formula: see text] holds. At first glance, this notion may appear too general, however, it enables to work with algebras endowed with various kinds of additional structures (e.g. comodule algebras over Hopf algebras, graded algebras, algebras with an action of a semigroup by anti-endomorphisms). This approach proves to be especially fruitful in the theory of polynomial identities. We show that if [Formula: see text] is a finite dimensional (not necessarily associative) algebra over a field of characteristic [Formula: see text] and [Formula: see text] is simple with respect to a generalized [Formula: see text]-action, then there exists [Formula: see text] where [Formula: see text] is the sequence of codimensions of polynomial [Formula: see text]-identities of [Formula: see text]. In particular, if [Formula: see text] is a finite dimensional (not necessarily group graded) graded-simple algebra, then there exists [Formula: see text] where [Formula: see text] is the sequence of codimensions of graded polynomial identities of [Formula: see text]. In addition, we study the free-forgetful adjunctions corresponding to (not necessarily group) gradings and generalized [Formula: see text]-actions.


Sign in / Sign up

Export Citation Format

Share Document