oligonychus pratensis
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Huyen Bui ◽  
Robert Greenhalgh ◽  
Gunbharpur S. Gill ◽  
Meiyuan Ji ◽  
Andre H. Kurlovs ◽  
...  

Maize (Zea mays subsp. mays) yield loss from arthropod herbivory is substantial. While the basis of resistance to major insect herbivores has been comparatively well-studied in maize, less is known about resistance to spider mite herbivores, which are distantly related to insects and feed by a different mechanism. Two spider mites, the generalist Tetranychus urticae, and the grass-specialist Oligonychus pratensis, are notable pests of maize, especially during drought conditions. We assessed resistance (antibiosis) to both mites of 38 highly diverse maize lines, including several previously reported to be resistant to one or the other mite species. We found that line B96, as well as its derivatives B49 and B75, were highly resistant to T. urticae. In contrast, neither these three lines, nor any others included in our study, were notably resistant to the specialist O. pratensis. Quantitative trait locus (QTL) mapping with replicate populations from crosses of B49, B75, and B96 to susceptible B73 identified a QTL in the same genomic interval on chromosome 6 for T. urticae resistance in each of the three resistant lines, and an additional resistance QTL on chromosome 1 was unique to B96. Single-locus genotyping with a marker coincident with the chromosome 6 QTL in crosses of both B49 and B75 to B73 revealed that the respective QTL was large-effect; it explained ∼70% of the variance in resistance, and resistance alleles from B49 and B75 acted recessively as compared to B73. Finally, a genome-wide haplotype analysis using genome sequence data generated for B49, B75, and B96 identified an identical haplotype, likely of initial origin from B96, as the source of T. urticae resistance on chromosome 6 in each of the B49, B75, and B96 lines. Our findings uncover the relationship between intraspecific variation in maize defenses and resistance to its major generalist and specialist spider mite herbivores, and we identified loci for use in breeding programs and for genetic studies of resistance to T. urticae, the most widespread spider mite pest of maize.


2021 ◽  
Author(s):  
Huyen Bui ◽  
Robert Greenhalgh ◽  
Gunbharpur S. Gill ◽  
Meiyuan Ji ◽  
Andre H. Kurlovs ◽  
...  

AbstractMaize (Zea mays subsp. mays) yield loss from arthropod herbivory is substantial. While the basis of resistance to major insect herbivores has been comparatively well-studied in maize, less is known about resistance to spider mite herbivores, which are distantly related to insects and feed by a different mechanism. Two spider mites, the generalist Tetranychus urticae, and the grass-specialist Oligonychus pratensis, are notable pests of maize, especially during drought conditions. We assessed the resistance to both mite species of 38 highly diverse maize lines, including several previously reported to be resistant to one or the other mite species. We found that line B96, as well as its derivatives B49 and B75, were highly resistant to T. urticae. In contrast, neither these three lines, nor any others included in our study, were notably resistant to O. pratensis. Quantitative trait locus (QTL) mapping with F2 populations from crosses of B49, B75, and B96 to susceptible B73 identified a large-effect QTL on chromosome 6 as underlying T. urticae resistance in each line, with an additional QTL on chromosome 1 in B96. Genome sequencing and haplotype analyses identified B96 as the apparent sole source of resistance haplotypes. Our study identifies loci for use in maize breeding programs for T. urticae resistance, as well as to assess if the molecular-genetic basis of spider mite resistance is shared with insect pests of maize, as B96 is also among the most resistant known maize lines to several insects, including the European corn borer, Ostrinia nubilalis.Key message Maize(Zea mays subsp. mays) inbred lines B49, B75, and B96 harbor large-effect loci for resistance to the generalist spider mite Tetranychus urticae, but not the specialist Oligonychus pratensis.


Author(s):  
Alice Ruckert ◽  
Julian R Golec ◽  
Cody L Barnes ◽  
Ricardo A Ramirez

Abstract Spider mite (Acari: Tetranychidae) outbreaks are common on corn grown in the arid West. Hot and dry conditions reduce mite development time, increase fecundity, and accelerate egg hatch. Climate change is predicted to increase drought incidents and produce more intense temperature patterns. Together, these environmental shifts may cause more frequent and severe spider mite infestations. Spider mite management is difficult as many commercially available acaricides are ineffective due to the development of resistance traits in field mite populations. Therefore, alternative approaches to suppress outbreaks are critically needed. Drought-tolerant plant hybrids alleviate the challenges of growing crops in water-limited environments; yet, it is unclear if drought-tolerant hybrids exposed to water stress affect mite outbreaks under these conditions. We conducted a greenhouse experiment to evaluate the effect of drought-tolerant corn hybrids on Banks grass mite [Oligonychus pratensis Banks (Acari: Tetranychidae)], a primary pest of corn, under optimal irrigation and water-stress irrigation. This was followed by a 2-yr field study investigating the effect of drought-tolerant corn hybrids exposed to the same irrigation treatments on Banks grass mite artificially infested on hybrids and resident spider mite populations. Results showed that water-stressed drought-tolerant hybrids had significantly lower Banks grass mite and resident spider mite populations than water-stressed drought-susceptible hybrids. Interestingly, water-stressed drought-tolerant hybrids had equal Banks grass mite populations to drought-susceptible and drought-tolerant hybrids under optimal irrigation. We posit that planting drought-tolerant hybrids may suppress spider mite outbreaks in water-challenged areas.


Zootaxa ◽  
2018 ◽  
Vol 4486 (3) ◽  
pp. 349 ◽  
Author(s):  
JUAN LI ◽  
TIAN-CI YI ◽  
JIAN-JUN GUO ◽  
DAO-CHAO JIN

Oligonychus pratensis (Banks, 1912) is redescribed based on adult females as well as immature instars collected from Imperata (Poaceae) in Zhangjiajie City, Hunan Province, China. The ontogenetic development of chaetotaxy in O. pratensis is the same as that in O. afrasiaticus (McGregor, 1939) and O. saccharinus Baker & Pritchard, 1960. Moreover, we remove O. shinkajii Ehara, 1963 from synonymy with O. modestus (Banks, 1900), due to significant differences in their aedeagal morphology. 


2008 ◽  
pp. 378-378
Author(s):  
Colin Berry ◽  
Jason M. Meyer ◽  
Marjorie A. Hoy ◽  
John B. Heppner ◽  
William Tinzaara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document