scholarly journals Maize Inbred Line B96 Is the Source of Large-Effect Loci for Resistance to Generalist but Not Specialist Spider Mites

2021 ◽  
Vol 12 ◽  
Author(s):  
Huyen Bui ◽  
Robert Greenhalgh ◽  
Gunbharpur S. Gill ◽  
Meiyuan Ji ◽  
Andre H. Kurlovs ◽  
...  

Maize (Zea mays subsp. mays) yield loss from arthropod herbivory is substantial. While the basis of resistance to major insect herbivores has been comparatively well-studied in maize, less is known about resistance to spider mite herbivores, which are distantly related to insects and feed by a different mechanism. Two spider mites, the generalist Tetranychus urticae, and the grass-specialist Oligonychus pratensis, are notable pests of maize, especially during drought conditions. We assessed resistance (antibiosis) to both mites of 38 highly diverse maize lines, including several previously reported to be resistant to one or the other mite species. We found that line B96, as well as its derivatives B49 and B75, were highly resistant to T. urticae. In contrast, neither these three lines, nor any others included in our study, were notably resistant to the specialist O. pratensis. Quantitative trait locus (QTL) mapping with replicate populations from crosses of B49, B75, and B96 to susceptible B73 identified a QTL in the same genomic interval on chromosome 6 for T. urticae resistance in each of the three resistant lines, and an additional resistance QTL on chromosome 1 was unique to B96. Single-locus genotyping with a marker coincident with the chromosome 6 QTL in crosses of both B49 and B75 to B73 revealed that the respective QTL was large-effect; it explained ∼70% of the variance in resistance, and resistance alleles from B49 and B75 acted recessively as compared to B73. Finally, a genome-wide haplotype analysis using genome sequence data generated for B49, B75, and B96 identified an identical haplotype, likely of initial origin from B96, as the source of T. urticae resistance on chromosome 6 in each of the B49, B75, and B96 lines. Our findings uncover the relationship between intraspecific variation in maize defenses and resistance to its major generalist and specialist spider mite herbivores, and we identified loci for use in breeding programs and for genetic studies of resistance to T. urticae, the most widespread spider mite pest of maize.

2021 ◽  
Author(s):  
Huyen Bui ◽  
Robert Greenhalgh ◽  
Gunbharpur S. Gill ◽  
Meiyuan Ji ◽  
Andre H. Kurlovs ◽  
...  

AbstractMaize (Zea mays subsp. mays) yield loss from arthropod herbivory is substantial. While the basis of resistance to major insect herbivores has been comparatively well-studied in maize, less is known about resistance to spider mite herbivores, which are distantly related to insects and feed by a different mechanism. Two spider mites, the generalist Tetranychus urticae, and the grass-specialist Oligonychus pratensis, are notable pests of maize, especially during drought conditions. We assessed the resistance to both mite species of 38 highly diverse maize lines, including several previously reported to be resistant to one or the other mite species. We found that line B96, as well as its derivatives B49 and B75, were highly resistant to T. urticae. In contrast, neither these three lines, nor any others included in our study, were notably resistant to O. pratensis. Quantitative trait locus (QTL) mapping with F2 populations from crosses of B49, B75, and B96 to susceptible B73 identified a large-effect QTL on chromosome 6 as underlying T. urticae resistance in each line, with an additional QTL on chromosome 1 in B96. Genome sequencing and haplotype analyses identified B96 as the apparent sole source of resistance haplotypes. Our study identifies loci for use in maize breeding programs for T. urticae resistance, as well as to assess if the molecular-genetic basis of spider mite resistance is shared with insect pests of maize, as B96 is also among the most resistant known maize lines to several insects, including the European corn borer, Ostrinia nubilalis.Key message Maize(Zea mays subsp. mays) inbred lines B49, B75, and B96 harbor large-effect loci for resistance to the generalist spider mite Tetranychus urticae, but not the specialist Oligonychus pratensis.


2018 ◽  
Vol 23 (10) ◽  
pp. 2033
Author(s):  
Ivana Marić ◽  
Irena Međo ◽  
Slobodan Jovanović ◽  
Radmila Petanović ◽  
Dejan Marčić

Despite economic importance of Tetranychidae, knowledge regarding diversity of spider mites in the Balkan Peninsula and Southeast Europe is incomplete, especially in protected natural areas. This study presents diversity of spider mites (Acari: Tetranychidae) collected over five growing seasons at 296 locations in 38 protected natural areas of Serbia. A total of 31 spider mite species were found, 10 from Bryobiinae and 21 from Tetranychinae. The species Eotetranychus fagi Zacher was recorded as new to Serbia and this record was also the first one for Southeast Europe. Spider mites were found on host plants in five basic types as well as many subtypes of terrestrial habitats, with woodland as the most dominant one. A total of 151 plant species from 44 families were recorded as hosts for spider mites including new world records: 60 new hosts for family Tetranychidae and 41 new hosts for 21 spider mite species. Host plants from Rosaceae family harbored the highest number of spider mite species (16). A considerable number of species was found on host plants from the families Betulaceae (11), Asteraceae (10) and Sapindaceae (10). Two cosmopolitan spider mites, Tetranychus urticae Koch and Tetranychus turkestani Ugarov & Nikolskii, were clearly distinguished with 67 (7 new) and 43 (13 new) recorded host species, respectively; among newly recorded hosts for Tetranychidae family, these two mite species were found on 27 and 12 hosts, respectively. After the two most common species, the most striking was the presence of Bryobia praetiosa Koch with 24 (4 new) recorded host plants, followed by Amphitetranychus viennensis (Zacher), Eotetranychus carpini (Oudemans) and Bryobia rubrioculus (Scheuten), with 21 (7 new), 20 (6 new) and 16 (2 new) hosts, respectively. The remaining tetranychids were found on 1–9 host plant species. This study provided the first insight into diversity of tetranychids in Serbian protected areas. Further research in this field should focus on mites from host plants representative of specific areas and habitats, including endangered, endemic and relict species.


2021 ◽  
Vol 26 (1) ◽  
pp. 304-316
Author(s):  
Ivana Marić ◽  
Irena Međo ◽  
Dejan Marčić ◽  
Radmila Petanović ◽  
Slobodan Jovanović ◽  
...  

Seven spider mite species were recorded for the first time in Serbia: Bryobia macedonica Hatzinikolis & Panou, 1996 and Bryobia querci Hatzinikolis & Panou, 1997 from Bryobiinae, and Eutetranychus orientalis Klein, 1936; Oligonychus bicolor Banks, 1894; Oligonychus platani McGregor, 1950 Tetranychus canadensis McGregor, 1950 and Tetranychus ludeni Zacher, 1913 from Tetranychinae. Together with previously reported data, these findings raise the number of known tetranychid species in Serbia to 44, the second highest number of spider mite species recorded in the Balkan countries. The records of O. bicolor and T. canadensis are also the first ones on the Balkan Peninsula. The most frequent species were T. ludeni and E. orientalis, found in 24 and 13 out of 57 sampling locations. Spider mites were recorded on host plants in four basic habitat types, but predominantly in cultivated habitats and woodlands. A total of 27 plant species from nine families were recorded as hosts for newly recorded spider mites, including 12 plant species as new hosts for four tetranychids, and three plant species as new hosts for the family Tetranychidae. Plant family Rosaceae had the highest number of new hosts (7) and harbored the highest number of spider mite species (5). Tetranychus ludeni had the highest number of host plants (11) with two plant species as its new hosts. Oligonychus bicolor was found on eight host plants including five new hosts for this species and one new host for the family Tetranychidae. The other two new hosts for the family Tetranychidae harbored O. platani and B. querci, respectively. Symptoms of heavy infestations by E. orientalis and T. ludeni were recorded on host plants in several locations.


2021 ◽  
Vol 22 (13) ◽  
pp. 6909
Author(s):  
Gang Li ◽  
Xunyan Liu ◽  
Guy Smagghe ◽  
Jinzhi Niu ◽  
Jinjun Wang

Molting is essential for arthropods to grow. As one of the important arthropod pests in agriculture, key spider mite species (Tetranychus and Panonychus) can normally molt three times from the larva to adult stage within a week. This physiological strategy results in the short lifecycle of spider mites and difficulties in their control in the field. Long non-coding RNAs (lncRNAs) regulate transcriptional editing, cellular function, and biological processes. Thus, analysis of the lncRNAs in the spider mite molting process may provide new insights into their roles in the molting mechanism. For this purpose, we used high-throughput RNA-seq to examine the expression dynamics of lncRNAs and mRNAs in the molting process of different development stages in Panonychus citri. We identified 9199 lncRNAs from 18 transcriptomes. Analysis of the lncRNAs suggested that they were shorter and had fewer exons and transcripts than mRNAs. Among these, 356 lncRNAs were differentially expressed during three molting processes: late larva to early protonymph, late protonymph to early deutonymph, and late deutonymph to early adult. A time series profile analysis of differentially expressed lncRNAs showed that 77 lncRNAs were clustered into two dynamic expression profiles (Pattern a and Pattern c), implying that lncRNAs were involved in the molting process of spider mites. Furthermore, the lncRNA–mRNA co-expression networks showed that several differentially expressed hub lncRNAs were predicted to be functionally associated with typical molting-related proteins, such as cuticle protein and chitin biosynthesis. These data reveal the potential regulatory function of lncRNAs in the molting process and provide datasets for further analysis of lncRNAs and mRNAs in spider mites.


2008 ◽  
Vol 75 (4) ◽  
pp. 1036-1043 ◽  
Author(s):  
Vera I. D. Ros ◽  
Vicki M. Fleming ◽  
Edward J. Feil ◽  
Johannes A. J. Breeuwer

ABSTRACT At least 20% of all arthropods and some nematode species are infected with intracellular bacteria of the genus Wolbachia. This highly diverse genus has been subdivided into eight “supergroups” (A to H) on the basis of nucleotide sequence data. Here, we report the discovery of a new Wolbachia supergroup recovered from the spider mite species Bryobia species V (Acari: Tetranychidae), based on the sequences of three protein-coding genes (ftsZ, gltA, and groEL) and the 16S rRNA gene. Other tetranychid mites possess supergroup B Wolbachia strains. The discovery of another Wolbachia supergroup expands the known diversity of Wolbachia and emphasizes the high variability of the genus. Our data also clarify the existing supergroup structure and highlight the use of multiple gene sequences for robust phylogenetic analysis. In addition to previous reports of recombination between the arthropod-infecting supergroups A and B, we provide evidence for recombination between the nematode-infecting supergroups C and D. Robust delineation of supergroups is essential for understanding the origin and spread of this common reproductive parasite and for unraveling mechanisms of host adaptation and manipulation across a wide range of hosts.


Blood ◽  
2003 ◽  
Vol 101 (6) ◽  
pp. 2349-2354 ◽  
Author(s):  
Emma Boulton ◽  
Clare Cole ◽  
Abigail Knight ◽  
Helen Cleary ◽  
Roger Snowden ◽  
...  

Inbred CBA/H mice are susceptible to radiation-induced acute myeloid leukemia (r-AML), and C57BL/6 mice are resistant. A genome-wide screen for linkage between genotype and phenotype (r-AML) of 67 affected (CBA/H × C57BL/6)F1 × CBA/H backcross mice has revealed at least 2 suggestive loci that contribute to the overall lifetime risk for r-AML. Neither is necessary or sufficient for r-AML, but relative risk is the net effect of susceptibility (distal chromosome 1) and resistance (chromosome 6) loci. An excess of chromosome 6 aberrations in mouse r-AML and bone marrow cells up to 6 months after irradiation in vivo suggests the locus confers a proliferative advantage during the leukemogenic process. The stem cell frequency regulator 1 (Scfr1) locus maps to distal chromosome 1 and determines the frequency of hemopoietic stem cells (HSCs) in inbred mice, suggesting that target size may be one factor in determining the relative susceptibility of inbred mice to r-AML.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fabien Cormier ◽  
Guillaume Martin ◽  
Hélène Vignes ◽  
Laurie Lachman ◽  
Denis Cornet ◽  
...  

Abstract Background Greater yam (Dioscorea alata L.) is a major tropical and subtropical staple crop cultivated for its starchy tubers. Breeding of this dioecious species is hampered by its erratic flowering, yet little is currently known on the genetic determinism of its sexual reproduction. Result Here we used a genome-wide association approach and identified a major genetic barrier to reproduction in yam on chromosome 1, as represented by two candidate genes. A deleterious effect on male fitness could be hypothesized considering the involvement of these two genes in male reproduction and the low frequency of this non-flowering dominant allele within the male genepool. We also extended the hypothesis of a XX/XY sex-determination system located on chromosome 6 in D. alata to encompass most of the species diversity. Moreover, a kompetitive allele-specific PCR (KASPar) marker was designed and validated that enables accurate cultivar sex estimation. The reconstruction of chromosome 6 associated with the detection of highly putative structural variations confirmed the possible involvement of a major part of the chromosome. Conclusion The findings of this study, combined with proper estimation of accession ploidy levels to avoid endosperm incompatibility issues, could facilitate the design of future promising parental combinations in D. alata breeding programs. Moreover, the discovery of this genetic barrier to reproduction opens new avenues for gaining insight into yam reproductive biology and diversification.


2018 ◽  
Author(s):  
Diogo Prino Godinho ◽  
Helena Cristina Serrano ◽  
Anabela Silva ◽  
Cristina Branquinho ◽  
Sara Magalhães

AbstractSome plants can accumulate in their shoots metals that are toxic to most other organisms. This ability may serve as a defence against herbivores. Although both metal accumulation and the production of organic defences may be costly to the plant, the two mechanisms may interact on their effect on herbivores. However, this interplay between metal-based and ‘classical’ organic defences remains overlooked.To fill this gap, we studied the interactions between tomato (Solanum lycopersicum), a plant that accumulates cadmium, and two spider-mites,Tetranychus urticaeandT. evansithat respectively induce and suppress organic plant defences, measurable via the activity of trypsin inhibitors. We exposed plants to different concentrations of cadmium and measured their effect on mites and plants. The oviposition of both spider-mite species was higher on plants exposed to low concentrations of Cd than on control plants but decreased at concentrations above 0.5 mM. Therefore, herbivores with contrasting responses to organic defences responded similarly to metal accumulation by the plants. On the plant, despite clear evidence for Cd accumulation, we did not detect any effect of Cd on traits that reflect the general response of the plant, such as biomass, water content and carbon/nitrogen ratio. Still, we found an effect of Cd supply upon the quantity of soluble sugars and leaf reflectance changes that may reflect structural modifications in the cells. In turn, these changes in plant traits interfered with the performance of spider mites feeding on those plants.Additionally, we show that the induction and suppression of plant defences by spider mites was not affected by Cd supply to the plants. Furthermore, the effect of metal supply on spider-mite performance was not affected by previous infestation. Together, our results suggest no interaction between metal-based and organic plant defences, on our system. This may be useful for plants living in heterogeneous environments, as they may use one or the other defence mechanism, depending on their relative performance in each environment. This may be relevant to studies on the interactions between herbivores and plants, from physiology to ecology.


Acarologia ◽  
2017 ◽  
Vol 58 (1) ◽  
pp. 3-14
Author(s):  
Ivana Marić ◽  
Dejean Marčić ◽  
Radmila Petanović ◽  
Philippe Auger

Despite the economic importance of spider mites (Acari: Tetranychidae), data on their biodiversity are scarce in some regions of Europe, such as Balkan Peninsula and particularly in Serbia. In this country, according to the Spider Mites Web database, only 17 spider mite species belonging to seven genera have been reported. This study provides a review of the Serbian literature dealing with spider mites species recorded in Serbia and presents results of a four-year faunistic survey in which spider mites were collected on cultivated plants and native vegetation throughout the country. In the survey, a total of 23 species were recorded, including six species new to Serbian acarofauna: Bryobia praetiosa, Eotetranychus aceri, E. fraxini, E. pruni, Panonychus citri and Tetranychus evansi. Together with previously reported data, it raises the number of known spider mite species in Serbia to 36. A total of 90 host plant species from 21 families that are favorable to spider mites were recorded in this study; there were 62 new host records for 20 spider mite species with 11 records of new plant species as hosts of spider mites. There were 63 new records for Serbia among host plant species, raising the number of Serbian hosts for tetranychid mites to 137. The spider mite species new to Serbian acarofauna were found on 17 newly recorded host plants from 11 families. A key to all known spider mites species from Serbia is provided.


Acarologia ◽  
2018 ◽  
Vol 58 (Suppl) ◽  
pp. 98-118
Author(s):  
Mauro Lorenzon ◽  
Alberto Pozzebon ◽  
Carlo Duso

The success of phytoseiid mite releases to control spider mites [Eotetranychus carpini (Oudemans) and Panonychus ulmi (Koch)] on grapevines can be influenced by pesticide use and competition with local predatory mites. In field experiments we evaluated the effect of the release of Kampimodromus aberrans (Oudemans) and Typhlodromus pyri Scheuten strains showing field resistance to organophosphates and dithiocarbamates. Predatory mites were released in two vineyards infested by spider mites despite the occurrence of Amblyseius andersoni (Chant) and/or Phytoseius finitimus Ribaga. Single or mixed releases were planned. Spider mite populations were not effectively controlled by local predatory mites while successful control was achieved by released species. The effects of releases were higher in the second experimental year. In most cases A. andersoni densities were reduced by T. pyri and K. aberrans releases. Ph. finitimus suffered less than A. andersoni from intraguild predation. Among released species, the effect of the presence of a competitor was higher on T. pyri than on K. aberrans. Results suggest that the outcome of intraguild predation is prey-mediated. The equilibrium level between K. aberrans and T. pyri may depend on which spider mite species is the shared prey. The implications in management of spider mites on grapevines are discussed.


Sign in / Sign up

Export Citation Format

Share Document