flow displacement
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 2)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Tao Zhang ◽  
Yumei Li ◽  
Hui Lu ◽  
Jianing Jiang

The radial jet drilling (RJD) is a key technology to improve the development efficiency of low-permeability oil and gas resources. In order to seek a reasonable hydraulic engineering parameter combination of hydraulic radial jet drilling, to obtain the optimal hydraulic energy distribution, a jet radial horizontal drilling simulation experiment system of the casing windowing is designed. A sequence of experimental investigations focused on engineering parameters of pump displacement, rotating speed, and frequency of high-pressure plunger pump is performed, and the operability and the feasibility of the experiment are verified. To evaluate the maximum drillable length and the self-propelled force of a jet nozzle, a 3D numerical model based on ANSYS-CFX is developed to evaluate the effects of the inlet flow displacement, the flow rates ratio K , and the angle ratio F : B of the forward orifice and backward orifice of the jet nozzle on its maximum drillable length and self-propelled force by sensitivity analysis. Finally, the comparison of numerical simulation results (Ln), mathematical results (Lm), and experiment results (Le) of the maximum drillable length are presented. It is observed that the simulation results are consistent with the experiment results with an average accuracy of 97.07%. Therefore, the proposed numerical model has a good performance in predicting the maximum drillable length of the multiorifice nozzle. The research results can provide theoretical guidance for improving the rock breaking and drilling capability of radial jet drilling technology.


2021 ◽  
Author(s):  
Steffen Frey ◽  
Stefan Scheller ◽  
Nikolaos Karadimitriou ◽  
Dongwon Lee ◽  
Guido Reina ◽  
...  

2021 ◽  
Author(s):  
TONGRAN QIN ◽  
Andres Caballero ◽  
Wenbin Mao ◽  
Brian Barrett ◽  
Norihiko Kamioka ◽  
...  

Bicuspid aortic valve (BAV), the most common congenital heart disease, is prone to develop significant valvular dysfunction and aortic wall abnormalities. Growing evidence has suggested that abnormal BAV hemodynamics could contribute to the disease progression. In order to investigate the BAV hemodynamic, we performed 3D patient-specific fluid-structure interaction (FSI) simulations of BAV with fully coupled flow dynamics and valve motions throughout the cardiac cycle. The results showed that the flow during systole can be characterized by a systolic jet and two counter-rotating recirculation vortices. At peak systole, the jet was usually eccentric, with asymmetric recirculation vortices, and helical flow motion in the ascending aorta. The flow structure at peak systole was quantified using the vorticity, flow reversal ratio and helicity index at four locations from the aortic root to the ascending aorta. The systolic jet was evaluated using the metrics including the peak velocity, normalized flow displacement, and jet angle. It was found that both the peak velocity and normalized flow displacement (rather than jet angle) of the systolic jet showed a strong correlation with the vorticity and helicity index of the flow in the ascending aorta, which suggests that these two metrics can be used for noninvasive evaluation of abnormal flow patterns in BAV patients.


Author(s):  
Ana Luiza Mastbaum ◽  
Ayla Bosso de Souza ◽  
Jéssica Lailla Ferreira Bittencourt Neto ◽  
Renan Vieira Bela ◽  
Abelardo Borges Barreto

AbstractThe main purpose of this work is to present an interpretation method for injectivity test in a two-layer reservoir that can be extended to a multilayer approach, based on new analytical solutions to the well pressure response. The developed formulation uses a radially composite reservoir approach and considers that the water front propagation may be approximated by a piston-like flow displacement. The reservoir is assumed to be laterally infinite and properties such as permeability and porosity may be different in each layer. The solutions were developed in the Laplace domain and then inverted to real domain using the Stehfest Algorithm. The proposed formulation was then validated by comparison with a numerical flow simulator. Results showed a good agreement between the numerical simulator and the analytical model. Also, a sensitivity study was done by comparing the results of different scenarios varying oil viscosities and injection flow rate to assess how these properties affect the pressure and pressure derivative profiles.


2021 ◽  
Author(s):  
Kieu Hiep Le

To preserve the product quality as well as to reduce the logistics and storage cost, drying process is widely applied in the processing of porous material. In consideration of transport phenomena that involve a porous medium during drying, the complex morphology of the medium, and its influences on the distribution, flow, displacement of multiphase fluids are encountered. In this chapter, the recent advanced mass and energy transport models of drying processes are summarized. These models which were developed based on both pore- and continuum-scales, may provide a better fundamental understanding of non-isothermal liquid–vapor transport at both the continuum scale and the pore scale, and to pave the way for designing, operating, and optimizing drying and relevant industrial processes.


2021 ◽  
Vol 85 (6) ◽  
pp. 3154-3168
Author(s):  
Simon Schmidt ◽  
Sebastian Flassbeck ◽  
Sonja Schmelter ◽  
Ellen Schmeyer ◽  
Mark E. Ladd ◽  
...  

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yung-Yen Ko ◽  
Yu-Ying Lin

The lateral spreading of the ground due to liquefaction during earthquakes may considerably damage the embedded piles, which is an important issue in the seismic design of pile foundations. In this paper, nonlinear pseudostatic analyses were performed for the responses of piles subjected to actions of laterally spreading ground, which were modelled as flow displacement and flow pressure, respectively. The former is a displacement-based approach, in which the free-field ground displacement profile is assigned to the pile-soil interaction system; while the latter is a force-based approach, which regards the actions of laterally spreading ground as flow pressure and directly applies it to the pile. The concept of the Winkler foundation was utilized to account for the interaction between pile and soil. The soil springs with elastic-plastic p-y curves were used to describe the relationship of soil reaction versus lateral displacement around the pile. The distributed plastic hinges were deployed to simulate the possible flexural failure of the pile. One of the pile failure cases caused by liquefaction-induced lateral spreading in the 1995 Kobe Earthquake was adopted for case study. The analyzed pile response to flow displacement and flow pressure was compared with the field observations, and the validity and capability of both approaches were accordingly discussed. The influence of axial load on laterally loaded piles, namely, the P-delta effect was also examined. These results help to reasonably assess the performance of piles subjected to lateral spreading of liquefied ground.


Author(s):  
Albert Gareev ◽  
Asgat Gimadiev ◽  
Ilya Popelnyuk ◽  
Dmitry Stadnik ◽  
Viktor Sverbilov

Abstract In order to increase efficiency of diagnostics of electro-hydro-mechanical systems (EHMS) it is advisable to have simulation models of typical faults. Such approach makes it possible to estimate in advance, even at the stage of mathematical modeling, the impact of different faults on functioning of hydraulic systems. This work is aimed at creating a database containing complexes of diagnostic features, which allow distinguishing types of faults, their causes and stages of development. In the paper, typical faults of EHMS are presented on the basis of statistical information from literature sources and experimental research. They include internal and external leakages, spool and sleeve sticking, degradation of power fluid. The causes of faults and their impact on hydraulic systems functioning are considered. Simulation models of typical faults are implemented and studied in the SimulationX software package. The static and dynamic characteristics of the systems are investigated in order to identify diagnostic signs of various faults. The impact of typical faults on various system parameters is discussed. During the research, the tasks of selecting the rational location of sensors of different types (pressure, flow, displacement, or force sensors), their quantity for recognition of a typical fault are solved. The results of theoretical and experimental studies of serviceable and faulty systems for cases of control and disturbance actions are presented. Comparative analysis of transient processes of serviceable and faulty EHMS is presented with assessment of difference between theoretical and experimental data. The results of the work allow to more rationally designing the diagnostic complex for more accurate identification of the type of fault, stage of its development and prediction of residual service life of EHMS.


Sign in / Sign up

Export Citation Format

Share Document