hiemenz flow
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 1)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Golam Mortuja Sarkar ◽  
Suman Sarkar ◽  
Bikash Sahoo

Purpose This paper aims to theoretically and numerically investigate the steady two-dimensional (2D) Hiemenz flow with heat transfer of Reiner-Rivlin fluid over a linearly stretching/shrinking sheet. Design/methodology/approach The Navier–Stokes equations are transformed into self-similar equations using appropriate similarity transformations and then solved numerically by using shooting technique. A simple but effective mathematical analysis has been used to prove the existence of a solution for stretching case (λ> 0). Moreover, an attempt has been laid to carry the asymptotic solution behavior for large stretching. The obtained asymptotic solutions are compared with direct numerical solutions, and the comparison is quite remarkable. Findings It is observed that the self-similar equations exhibit dual solutions within the range [λc, −1] of shrinking parameter λ, where λc is the turning point from where the dual solutions bifurcate. Unique solution is found for all stretching case (λ > 0). It is noticed that the effects of cross-viscous parameter L and shrinking parameter λ on velocity and thermal fields show opposite character in the dual solution branches. Thus, a linear temporal stability analysis is performed to determine the basic feasible solution. The stability analysis is based on the sign of the smallest eigenvalue, where positive or negative sign leading to a stable or unstable solution. The stability analysis reveals that the first solution is stable that describes the main flow. Increase in cross-viscous parameter L resulting in a significant increment in skin friction coefficient, local Nusselt number and dual solutions domain. Originality/value This work’s originality is to examine the combined effects of cross-viscous parameter and stretching/shrinking parameter on skin friction coefficient, local Nusselt number, velocity and temperature profiles of Hiemenz flow over a stretching/shrinking sheet. Although many studies on viscous fluid and nanofluid have been investigated in this field, there are still limited discoveries on non-Newtonian fluids. The obtained results can be used as a benchmark for future studies of higher-grade non-Newtonian flows with several physical aspects. All the generated results are claimed to be novel and have not been published elsewhere.



2020 ◽  
Vol 19 ◽  
pp. 103351
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop






2018 ◽  
Vol 7 (4) ◽  
pp. 287-301
Author(s):  
Kourosh Parand ◽  
Yasaman Lotfi ◽  
Jamal Amani Rad

AbstractIn the present work, the problem of Hiemenz flow through a porous medium of a incompressible non-Newtonian Rivlin-Ericksen fluid with heat transfer is presented and newly developed analytic method, namely the homotopy analysis method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. This flow impinges normal to a plane wall with heat transfer. It has been attempted to show capabilities and wide-range applications of the homotopy analysis method in comparison with the numerical method in solving this problem. Also the convergence of the obtained HAM solution is discussed explicitly. Our reports consist of the effect of the porosity of the medium and the characteristics of the Non-Newtonian fluid on both the flow and heat.



Sign in / Sign up

Export Citation Format

Share Document