stochastic search algorithm
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2017 ◽  
Vol 70 (4) ◽  
pp. 699-718 ◽  
Author(s):  
Donggyun Kim ◽  
Katsutoshi Hirayama ◽  
Tenda Okimoto

Ship collision avoidance involves helping ships find routes that will best enable them to avoid a collision. When more than two ships encounter each other, the procedure becomes more complex since a slight change in course by one ship might affect the future decisions of the other ships. Two distributed algorithms have been developed in response to this problem: Distributed Local Search Algorithm (DLSA) and Distributed Tabu Search Algorithm (DTSA). Their common drawback is that it takes a relatively large number of messages for the ships to coordinate their actions. This could be fatal, especially in cases of emergency, where quick decisions should be made. In this paper, we introduce Distributed Stochastic Search Algorithm (DSSA), which allows each ship to change her intention in a stochastic manner immediately after receiving all of the intentions from the target ships. We also suggest a new cost function that considers both safety and efficiency in these distributed algorithms. We empirically show that DSSA requires many fewer messages for the benchmarks with four and 12 ships, and works properly for real data from the Automatic Identification System (AIS) in the Strait of Dover.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mehmet Umut Caglar ◽  
Ranadip Pal

Background. Design of drug combination cocktails to maximize sensitivity for individual patients presents a challenge in terms of minimizing the number of experiments to attain the desired objective. The enormous number of possible drug combinations constrains exhaustive experimentation approaches, and personal variations in genetic diseases restrict the use of prior knowledge in optimization.Results. We present a stochastic search algorithm that consisted of a parallel experimentation phase followed by a combination of focused and diversified sequential search. We evaluated our approach on seven synthetic examples; four of them were evaluated twice with different parameters, and two biological examples of bacterial and lung cancer cell inhibition response to combination drugs. The performance of our approach as compared to recently proposed adaptive reference update approach was superior for all the examples considered, achieving an average of 45% reduction in the number of experimental iterations.Conclusions.As the results illustrate, the proposed diverse stochastic search algorithm can produce optimized combinations in relatively smaller number of iterative steps. This approach can be combined with available knowledge on the genetic makeup of the patient to design optimal selection of drug cocktails.


PLoS Genetics ◽  
2013 ◽  
Vol 9 (8) ◽  
pp. e1003657 ◽  
Author(s):  
Leonardo Bottolo ◽  
Marc Chadeau-Hyam ◽  
David I. Hastie ◽  
Tanja Zeller ◽  
Benoit Liquet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document