amniotic fluid cells
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 11)

H-INDEX

31
(FIVE YEARS 1)

Author(s):  
Margit Rosner ◽  
Markus Hengstschläger

: In the last two decades, fetal amniotic fluid stem cells progressively attracted attention in the context of both basic research and the development of innovative therapeutic concepts. They exhibit broadly multipotent plasticity with the ability to differentiate into cells of all three embryonic germ layers and low immunogenicity. They are convenient to maintain, highly proliferative, genomically stable, non-tumorigenic, perfectly amenable to genetic modifications, and do not raise ethical concerns. However, it is important to note that among the various fetal amniotic fluid cells, only c-Kit+ amniotic fluid stem cells represent a distinct entity showing the full spectrum of these features. Since amniotic fluid additionally contains numerous terminally differentiated cells and progenitor cells with more limited differentiation potentials, it is of highest relevance to always precisely describe the isolation procedure and characteristics of the used amniotic fluid-derived cell type. It is of obvious interest for scientists, clinicians, and patients alike to be able to rely on up-to-date and concisely separated pictures of the utilities as well as the limitations of terminally differentiated amniotic fluid cells, amniotic fluid-derived progenitor cells, and c-Kit+ amniotic fluid stem cells, to drive these distinct cellular models towards as many individual clinical applications as possible.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarang Younesi ◽  
Mohammad Mahdi Taheri Amin ◽  
Sedigheh Hantoushzadeh ◽  
Pourandokht Saadati ◽  
Soudabeh Jamali ◽  
...  

AbstractThe aim of present study was to assess the karyotypes of amniotic fluid cells and find the frequency of chromosomal abnormalities and their significance in clinical setting. A total of 15,401 pregnant women were assessed from March 2016 to May 2019, and 14,968 amniotic fluid samples were successfully cultured. These fetuses were grouped according to different indications including advanced maternal age, abnormal nuchal translucency (NT) values, positive first/second trimester screening results, high risk NIPT results, very low PAPP-A and free β-hCG multiples of the normal median (MoM) results, abnormal ultrasound findings or previous history of chromosomal abnormalities. Results indicated the presence of normal karyotype in 90.2% (13,497/14,968) of fetuses. Totally, 46.4% (6945/14,968) of fetuses were 46,XX and 43.8% (6552/14,968) had 46,XY chromosome pattern. A total of 1077 abnormal karyotypes were found among 14,968 fetuses, thus the rate of abnormal fetuses was calculated to be 7.2% (1072/14,968). Meanwhile, a total of 394 cases (2.8%) had a normal polymorphism in their karyotype. In other words, abnormal karyotypes were detected in one of 13.9 cases of patients underwent amniocentesis. Down syndrome, Edward’s syndrome, abnormal mosaicisms and Patau’s syndrome were detected in 4.4% (659/14,968), 0.57% (85/14,968), 0.49% (74/14,968) and 0.24% (36/14,968) of cases, respectively. Sex chromosomal abnormalities including Klinefelter syndrome, Turner syndrome and 47,XXX karyotype were detected in 64 cases (0.43%). In this article, the rates of chromosomal abnormalities are compared between different groups of patients based on the advanced maternal age, abnormal NT values, very low PAPP-A and free β-hCG MoMs results, and positive FTS results. The current investigation provides insight into the most appropriate indications for amniocentesis in Iran.


Author(s):  
Seyed Mehdi Hoseini ◽  
Fateme Montazeri ◽  
Maryam Moghaddam-Matin ◽  
Ahmad Reza Bahrami ◽  
Hassan Heidarian Meimandi ◽  
...  

Background: The genomic stability of stem cells to be used in cell therapy and other clinical applications is absolutely critical. In this regard, the relationship between in vitro expansion and the chromosomal instability (CIN), especially in human amniotic fluid cells (hAFCs) has not yet been completely elucidated. Objective: To investigate the CIN of hAFCs in primary and long-term cultures and two different culture mediums. Materials and Methods: After completing prenatal genetic diagnoses (PND) using karyotype technique and chromosomal analysis, a total of 15 samples of hAFCs from 650 samples were randomly selected and cultured in two different mediums as AmnioMAX II and DMEM. Then, proliferative cells were fixed on the slide to be used in standard chromosome G-banding analysis. Also, the senescent cells were screened for aneuploidy considering 8 chromosomes by FISH technique using two probe sets including PID I (X-13-18-21) & PID II (Y-15-16-22). Results: Karyotype and interphase fluorescence in situ hybridization (iFISH) results from 650 patients who were referred for prenatal genetic diagnosis showed that only 6 out of them had culture- derived CIN as polyploidy, including mosaic diploidtriploid and diploid-tetraploid. Moreover, the investigation of aneuploidies in senesced hAFCs demonstrated the rate of total chromosomal abnormalities as 4.3% and 9.9% in AmnioMAX- and DMEM-cultured hAFCs, respectively. Conclusion: hAFCs showed a low rate of CIN in two AmnioMAX II and DMEM mediums and also in the proliferative and senescent phases. Therefore, they could be considered as an attractive stem cell source with therapeutic potential in regenerative medicine. Key words: Human amniotic fluid cells, Chromosomal instability, Pseudomosaicism, Amniocentesis, Replicative senescence.


2020 ◽  
Vol 20 (3) ◽  
pp. 338-347 ◽  
Author(s):  
Seyed Mehdi Hoseini ◽  
Fateme Montazeri ◽  
Ahmad Reza Bahrami ◽  
Seyed Mehdi Kalantar ◽  
Saeede Rahmani ◽  
...  

2020 ◽  
Vol 43 ◽  
pp. 101712
Author(s):  
Jing Wang ◽  
Yazhou Cui ◽  
Kaixuan Xing ◽  
Jing Luan ◽  
Jinxiang Han

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ding Wang ◽  
Yingjun Xie ◽  
Minyi Yan ◽  
Qianying Pan ◽  
Yi Liang ◽  
...  

Abstract Background Colchicine is a clinical medicine used for relief from gout and familial Mediterranean fever. Because of its toxic effects, intravenous injection of colchicine has been banned, but it is still widely administered orally. We assayed the toxic effects of colchicine in cultured primary chorionic villus cells and amniotic fluid cells to interpret its influence on the placenta and foetus. Methods Bright field record and cell count kit 8 were used to value cell viability. Flow cytometer was used to identify cells markers, cell cycle and cell apoptosis. G-banding was used for karyotype analysis for sample genetic and drug effect evaluation. Results Chorionic villus cells and amniotic fluid cells were characterized as mesenchymal cells that share most cell surface markers and have a similar response to colchicine. Colchicine did not induce a decline in cell viability at low concentrations but suppressed cell proliferation by arresting the cell cycle in the G2/M phase and increased the risk of tetraploid generation in a small subset of cases. Conclusions Our study revealed the results of a colchicine-induced toxicity test in prenatal cells and determined the anti-mitotic biologically functional dose and manner of administration that might reduce the risk of tetraploid generation.


2019 ◽  
Author(s):  
Ding Wang ◽  
Yingjun Xie ◽  
Minyi Yan ◽  
Qianying Pan ◽  
Yi Liang ◽  
...  

Abstract Background Colchicine is a clinical medicine used for relief from gout and familial Mediterranean fever. Because of its toxic effects, intravenous injection of colchicine has been banned, but it is still widely administered orally. We assayed the toxic effects of colchicine in cultured primary chorionic villus cells and amniotic fluid cells to interpret its influence on the placenta and foetus. Methods Bright field record and cell count kit 8 were used to value cell viability. Flow cytometer was used to identify cells markers, cell cycle and cell apoptosis. G-banding was used for karyotype analysis for sample genetic and drug effect evaluation. Results Chorionic villus cells and amniotic fluid cells were characterized as mesenchymal cells that share most cell surface markers and have a similar response to colchicine. Colchicine did not induce a decline in cell viability at low concentrations but suppressed cell proliferation by arresting the cell cycle in the G2/M phase and increased the risk of tetraploid generation in a small subset of cases. Conclusions Our study revealed the results of a colchicine-induced toxicity test in prenatal cells and determined the anti-mitotic biologically functional dose and manner of administration that might reduce the risk of tetraploid generation.


2019 ◽  
Author(s):  
Ding Wang ◽  
Yingjun Xie ◽  
Minyi Yan ◽  
Qianying Pan ◽  
Yi Liang ◽  
...  

Abstract Background Colchicine is a clinical medicine used for relief from gout and familial Mediterranean fever. Because of its toxic effects, intravenous injection of colchicine has been banned, but it is still widely administered orally. We assayed the toxic effects of colchicine in cultured primary chorionic villus cells and amniotic fluid cells to interpret its influence on the placenta and foetus. Methods Bright field record and cell count kit 8 were used to value cell viability. Flow cytometer was used to identify cells markers, cell cycle and cell apoptosis. G-banding was used for karyotype analysis for sample genetic and drug effect evaluation. Results Chorionic villus cells and amniotic fluid cells were characterized as mesenchymal cells that share most cell surface markers and have a similar response to colchicine. Colchicine did not induce a decline in cell viability at low concentrations but suppressed cell proliferation by arresting the cell cycle in the G2/M phase and increased the risk of tetraploid generation in a small subset of cases. Conclusions Our study revealed the results of a colchicine-induced toxicity test in prenatal cells and determined the anti-mitotic biologically functional dose and manner of administration that might reduce the risk of tetraploid generation.


2019 ◽  
Author(s):  
Ding Wang ◽  
Yingjun Xie ◽  
Minyi Yan ◽  
Panying Pan ◽  
Yi Liang ◽  
...  

Abstract Background Colchicine is a clinical medicine used for relief from gout and familial Mediterranean fever. Because of its toxic effects, intravenous injection of colchicine has been banned, but it is still widely administered orally. We assayed the toxic effects of colchicine in cultured primary chorionic villus cells and amniotic fluid cells to interpret its influence on the placenta and foetus. Methods Bright field record and cell count kit 8 were used to value cell viability. Flow cytometer was used to identify cells markers, cell cycle and cell apoptosis. G-banding was used for karyotype analysis for sample genetic and drug effect evaluation. Results Chorionic villus cells and amniotic fluid cells were characterized as mesenchymal cells that share most cell surface markers and have a similar response to colchicine. Colchicine did not induce a decline in cell viability at low concentrations but suppressed cell proliferation by arresting the cell cycle in the G2/M phase and increased the risk of tetraploid generation in a small subset of cases. Conclusions Our study revealed the results of a colchicine-induced toxicity test in prenatal cells and determined the anti-mitotic biologically functional dose and manner of administration that might reduce the risk of tetraploid generation.


2019 ◽  
Author(s):  
Ding Wang ◽  
Yingjun Xie ◽  
Minyi Yan ◽  
Panying Pan ◽  
Yi Liang ◽  
...  

Abstract Background Colchicine is a clinical medicine used for relief from gout and familial Mediterranean fever. Because of its toxic effects, intravenous injection of colchicine has been banned, but it is still widely administered orally. We assayed the toxic effects of colchicine in cultured primary chorionic villus cells and amniotic fluid cells to interpret its influence on the placenta and foetus. Methods Bright field record and cell count kit 8 were used to value cell viability. Flow cytometer was used to identify cells markers, cell cycle and cell apoptosis. G-banding was used for karyotype analysis for sample genetic and drug effect evaluation. Results Chorionic villus cells and amniotic fluid cells were characterized as mesenchymal cells that share most cell surface markers and have a similar response to colchicine. Colchicine did not induce a decline in cell viability at low concentrations but suppressed cell proliferation by arresting the cell cycle in the G2/M phase and increased the risk of tetraploid generation in a small subset of cases. Conclusions Our study revealed the results of a colchicine-induced toxicity test in prenatal cells and determined the anti-mitotic biologically functional dose and manner of administration that might reduce the risk of tetraploid generation.


Sign in / Sign up

Export Citation Format

Share Document