inward rectifier potassium channel
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 11)

H-INDEX

31
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Collin G. Borcik ◽  
Isaac R. Eason ◽  
Maryam Yekefellah ◽  
Reza Amani ◽  
Ruixian Han ◽  
...  

2021 ◽  
Vol 118 (48) ◽  
pp. e2112267118
Author(s):  
Chen Zhao ◽  
Roderick MacKinnon

KATP channels are metabolic sensors that translate intracellular ATP/ADP balance into membrane excitability. The molecular composition of KATP includes an inward-rectifier potassium channel (Kir) and an ABC transporter–like sulfonylurea receptor (SUR). Although structures of KATP have been determined in many conformations, in all cases, the pore in Kir is closed. Here, we describe human pancreatic KATP (hKATP) structures with an open pore at 3.1- to 4.0-Å resolution using single-particle cryo-electron microscopy (cryo-EM). Pore opening is associated with coordinated structural changes within the ATP-binding site and the channel gate in Kir. Conformational changes in SUR are also observed, resulting in an area reduction of contact surfaces between SUR and Kir. We also observe that pancreatic hKATP exhibits the unique (among inward-rectifier channels) property of PIP2-independent opening, which appears to be correlated with a docked cytoplasmic domain in the absence of PIP2.


2021 ◽  
Author(s):  
Pei Qiao ◽  
Samantha Schrecke ◽  
Thomas Walker ◽  
Jacob McCabe ◽  
Jixing Lyu ◽  
...  

Understanding the molecular driving forces that underlie membrane protein-lipid interactions requires the characterization of their binding thermodynamics. Here, we employ native mass spectrometry in conjunction with a variable temperature apparatus to determine the thermodynamics of individual lipid binding events to the human G-protein-gated inward rectifier potassium channel, Kir3.2. We find that Kir3.2 displays distinct thermodynamic strategies to engage phosphatidylinositol (PI) and phosphorylated forms thereof. The addition of a 4’- phosphate to PI with 18:1-18:1 (DO) tails results in an increase in favorable entropy along with an enthalpic penalty. The binding of PI with two or more phosphates is more complex where lipids bind to Kir3.2 with the cytoplasmic domain in either a docked or extended configuration. Remarkably, the interaction of 4,5-bisphosphate DOPI (DOPI(4,5)P2) with Kir3.2 is solely driven by a large, favorable change in entropy. Installment of a third 3’-phosphate to DOPI(4,5)P2 results in an alternative thermodynamic strategy for the first binding event whereas each successive binding event shows strong enthalpy-entropy compensation. PI(4,5)P2 with 18:0-20:4 tails results in an inversion of thermodynamic parameters where the change in enthalpy now dominates. Collectively, the data show that entropy can indeed play important roles in regulating membrane protein-lipid interactions.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2628
Author(s):  
Stefania Della Vecchia ◽  
Maria Marchese ◽  
Filippo Maria Santorelli ◽  
Federico Sicca

A serotonergic dysfunction has been largely postulated as the main cause of depression, mainly due to its effective response to drugs that increase the serotonergic tone, still currently the first therapeutic line in this mood disorder. However, other dysfunctional pathomechanisms are likely involved in the disorder, and this may in part explain why some individuals with depression are resistant to serotonergic therapies. Among these, emerging evidence suggests a role for the astrocytic inward rectifier potassium channel 4.1 (Kir4.1) as an important modulator of neuronal excitability and glutamate metabolism. To discuss the relationship between Kir4.1 dysfunction and depression, a systematic review was performed according to the PRISMA statement. Searches were conducted across PubMed, Scopus, and Web of Science by two independent reviewers. Twelve studies met the inclusion criteria, analyzing Kir4.1 relationships with depression, through in vitro, in vivo, and post-mortem investigations. Increasing, yet not conclusive, evidence suggests a potential pathogenic role for Kir4.1 upregulation in depression. However, the actual contribution in the diverse subtypes of the disorder and in the comorbid conditions, for example, the epilepsy-depression comorbidity, remain elusive. Further studies are needed to better define the clinical phenotype associated with Kir4.1 dysfunction in humans and the molecular mechanisms by which it contributes to depression and implications for future treatments.


Author(s):  
Viktoriya Mashinson ◽  
Corey R Hopkins

The mosquito continues to be the most lethal animal to humans due to the devastating diseases that it carries and transmits. Controlling mosquito-borne diseases relies heavily on vector management using neurotoxic insecticides with limited modes of action. This has led to the emergence of resistance to pyrethroids and other neurotoxic insecticides in mosquitoes, which has reduced the efficacy of chemical control agents. Moreover, many neurotoxic insecticides are not selective for mosquitoes and negatively impact beneficial insects such as honeybees. Developing new mosquitocides with novel mechanisms of action is a clear unmet medical need; this review covers the efforts made toward this end by targeting the renal inward rectifier potassium channel (Kir) of the mosquito.


Perfusion ◽  
2020 ◽  
pp. 026765912093461
Author(s):  
Youqin He ◽  
Guilong Wang ◽  
Hong Gao ◽  
Yanqiu Liu ◽  
Huayu Li ◽  
...  

Objectives: The study aimed to determine the role of inward rectifier potassium channel 2.1 protein and connexin 40 expressions in regulating the duration of repolarization and conduction velocity of right atrial myocardium in rats following hypothermic ischemia-reperfusion. Methods: The Langendorff isolated rat cardiac perfusion models were divided into control (C) and hypothermic ischemia-reperfusion groups, with 8 models in group C and 16 models in group ischemia-reperfusion. Depending on the incidence of atrial arrhythmia after reperfusion, the models in group ischemia-reperfusion were further divided into reperfusion non-atrial arrhythmia or reperfusion atrial arrhythmia subgroup. Right atrial monophasic action potential duration at 50% and 90% of repolarization after 30 minutes of continuous perfusion in group C and group ischemia-reperfusion (T0), 105 minutes of continuous perfusion in group C or after 15 minutes of reperfusion in group ischemia-reperfusion (T1) and 120 minutes of continuous perfusion in group C or 30 minutes of reperfusion in group ischemia-reperfusion (T2) were recorded. Right atrial conduction velocity and effective refractory period were recorded at T2. Then, the expressions of inward rectifier potassium channel 2.1 protein and connexin 40 in the right atrial myocardium were detected. Results: Monophasic action potential duration at 50% and 90% were higher at T1 and T2 than those at T0 in subgroup reperfusion atrial arrhythmia (p < 0.05); monophasic action potential duration at 50% in subgroup reperfusion atrial arrhythmia were larger than group C and subgroup reperfusion non-atrial arrhythmia at T1 and T2 (p < 0.05); monophasic action potential duration at 90% in subgroup reperfusion atrial arrhythmia were larger than group C and subgroup reperfusion non-atrial arrhythmia at T1 and T2 (p < 0.05); effective refractory period in subgroup reperfusion atrial arrhythmia was greater than that in group C and subgroup reperfusion non-atrial arrhythmia, and the conduction velocity and the expressions of inward rectifier potassium channel 2.1 protein and connexin 40 were significantly lower than group C and subgroup reperfusion non-atrial arrhythmia (p < 0.05). Conclusions: The prolonged duration of repolarization and a decrease in conduction velocity of the atrial myocardium occur in rats after hypothermic ischemia-reperfusion. These observed effects may be related to the downregulated expressions of connexin 40 and inward rectifier potassium channel 2.1.


Sign in / Sign up

Export Citation Format

Share Document