atomic sphere approximation
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 1)

H-INDEX

12
(FIVE YEARS 0)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. Cardias ◽  
A. Szilva ◽  
M. M. Bezerra-Neto ◽  
M. S. Ribeiro ◽  
A. Bergman ◽  
...  

AbstractWe have derived an expression of the Dzyaloshinskii–Moriya interaction (DMI), where all the three components of the DMI vector can be calculated independently, for a general, non-collinear magnetic configuration. The formalism is implemented in a real space—linear muffin-tin orbital—atomic sphere approximation (RS-LMTO-ASA) method. We have chosen the Cr triangular trimer on Au(111) and Mn triangular trimers on Ag(111) and Au(111) surfaces as numerical examples. The results show that the DMI (module and direction) is drastically different between collinear and non-collinear states. Based on the relation between the spin and charge currents flowing in the system and their coupling to the non-collinear magnetic configuration of the triangular trimer, we demonstrate that the DMI interaction can be significant, even in the absence of spin-orbit coupling. This is shown to emanate from the non-collinear magnetic structure, that can induce significant spin and charge currents even with spin-orbit coupling is ignored.


2015 ◽  
Vol 19 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Shiva Dahal ◽  
Gyanu Kafle ◽  
Gopi Chandra Kaphle ◽  
Narayan Prasad Adhikari

Electronic structure of ordered alloys CuPd, CuPt, Cu3Pd and Cu3Pt have been studied using Tight Binding Linear Muffin-Tin Orbitals Atomic Sphere Approximation (TB-LMTO-ASA). For the electronic properties, we have performed band structure calculations. Our findings show that all the systems considered are metallic in nature. To know the contribution of the orbitals in the bands, the system is analyzed via fat bands which reveal most of the contributions on valence band for CuPd, CuPt, Cu3Pd and Cu3Pt is from d-orbital and on conduction band is from s and p-orbitals. We have also checked the magnetic properties of the alloys. The density of states for spin up and spin down electrons have found to be same in each and every steps, showing non-magnetic nature of CuPd, CuPt, Cu3Pd and Cu3Pt.Journal of Institute of Science and Technology, 2014, 19(1): 137-144


1998 ◽  
Vol 513 ◽  
Author(s):  
M. Gupta

ABSTRACTThe effect of Ni substitution in LaNi5 by 3d and s-p elements on the electronic structure of the intermetallic and its hydrides has been investigated using the self consistent linear muffin tin orbital (LMTO) method in the atomic sphere approximation (ASA). The Fermi level, EF, of LaNi4M (M = Fe,Co,Mn) is found to lie in the narrow additional M 3d subband above the Ni d states, leading to an increase in the density of states (DOS) at EF. In contrast, the substitution of Ni by an s element of the 3d series, Cu, or by an s-p element: Al or Sn results in a progressive filling of the Ni-d bands and in a decrease of the DOS at EF. In all the substituted intermetallic compounds, we find that the lattice expansion accounts for less than 50% of the observed decreased stability, this shows the importance of the effect of chemical substitution. We also discuss the factors which affect the electronic structure and the stability of the hydrides and compare our results with available experimental data.


1998 ◽  
Vol 513 ◽  
Author(s):  
H. Nakamura ◽  
D. Nguyen-Manh ◽  
D. G. Pettifor

ABSTRACTThe electronic structure and energetics of LaNi5, its hydrogen solution (α-La2Ni10H) and its hydride (β-La2Ni10H14) were investigated by means of the tight-binding linear muffin-tin orbitals method within the atomic sphere approximation (TB-LMTO-ASA). Preferred site occupancy by the absorbed hydrogen atoms was investigated in terms of the charge density of the interstitial sites and the total energy, both of which indicate that the 6m site in the P6/mmm symmetry is the most preferred. A negative heat of formation of La2Ni10H14 was obtained from the total energy calculations.


Sign in / Sign up

Export Citation Format

Share Document