early visual system
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Olivier J. Hénaff ◽  
Yoon Bai ◽  
Julie A. Charlton ◽  
Ian Nauhaus ◽  
Eero P. Simoncelli ◽  
...  

AbstractMany sensory-driven behaviors rely on predictions about future states of the environment. Visual input typically evolves along complex temporal trajectories that are difficult to extrapolate. We test the hypothesis that spatial processing mechanisms in the early visual system facilitate prediction by constructing neural representations that follow straighter temporal trajectories. We recorded V1 population activity in anesthetized macaques while presenting static frames taken from brief video clips, and developed a procedure to measure the curvature of the associated neural population trajectory. We found that V1 populations straighten naturally occurring image sequences, but entangle artificial sequences that contain unnatural temporal transformations. We show that these effects arise in part from computational mechanisms that underlie the stimulus selectivity of V1 cells. Together, our findings reveal that the early visual system uses a set of specialized computations to build representations that can support prediction in the natural environment.


2021 ◽  
Vol 21 (9) ◽  
pp. 2412
Author(s):  
Lily E. Kramer ◽  
Talia Konkle ◽  
Marlene R. Cohen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sandra Hanekamp ◽  
Branislava Ćurčić-Blake ◽  
Bradley Caron ◽  
Brent McPherson ◽  
Anneleen Timmer ◽  
...  

AbstractThe degree to which glaucoma has effects in the brain beyond the eye and the visual pathways is unclear. To clarify this, we investigated white matter microstructure (WMM) in 37 tracts of patients with glaucoma, monocular blindness, and controls. We used brainlife.io for reproducibility. White matter tracts were subdivided into seven categories ranging from those primarily involved in vision (the visual white matter) to those primarily involved in cognition and motor control. In the vision tracts, WMM was decreased as measured by fractional anisotropy in both glaucoma and monocular blind subjects compared to controls, suggesting neurodegeneration due to reduced sensory inputs. A test–retest approach was used to validate these results. The pattern of results was different in monocular blind subjects, where WMM properties increased outside the visual white matter as compared to controls. This pattern of results suggests that whereas in the monocular blind loss of visual input might promote white matter reorganization outside of the early visual system, such reorganization might be reduced or absent in glaucoma. The results provide indirect evidence that in glaucoma unknown factors might limit the reorganization as seen in other patient groups following visual loss.


2021 ◽  
Vol 17 (1) ◽  
pp. e1008629
Author(s):  
Victor Boutin ◽  
Angelo Franciosini ◽  
Frederic Chavane ◽  
Franck Ruffier ◽  
Laurent Perrinet

Both neurophysiological and psychophysical experiments have pointed out the crucial role of recurrent and feedback connections to process context-dependent information in the early visual cortex. While numerous models have accounted for feedback effects at either neural or representational level, none of them were able to bind those two levels of analysis. Is it possible to describe feedback effects at both levels using the same model? We answer this question by combining Predictive Coding (PC) and Sparse Coding (SC) into a hierarchical and convolutional framework applied to realistic problems. In the Sparse Deep Predictive Coding (SDPC) model, the SC component models the internal recurrent processing within each layer, and the PC component describes the interactions between layers using feedforward and feedback connections. Here, we train a 2-layered SDPC on two different databases of images, and we interpret it as a model of the early visual system (V1 & V2). We first demonstrate that once the training has converged, SDPC exhibits oriented and localized receptive fields in V1 and more complex features in V2. Second, we analyze the effects of feedback on the neural organization beyond the classical receptive field of V1 neurons using interaction maps. These maps are similar to association fields and reflect the Gestalt principle of good continuation. We demonstrate that feedback signals reorganize interaction maps and modulate neural activity to promote contour integration. Third, we demonstrate at the representational level that the SDPC feedback connections are able to overcome noise in input images. Therefore, the SDPC captures the association field principle at the neural level which results in a better reconstruction of blurred images at the representational level.


Author(s):  
Azzurra Invernizzi ◽  
Koen V. Haak ◽  
Joana C. Carvalho ◽  
Remco J. Renken ◽  
Frans W. Cornelissen

AbstractThe majority of neurons in the human brain process signals from neurons elsewhere in the brain. Connective Field (CF) modeling is a biologically-grounded method to describe this essential aspect of the brain’s circuitry. It allows characterizing the response of a population of neurons in terms of the activity in another part of the brain. CF modeling translates the concept of the receptive field (RF) into the domain of connectivity by assessing the spatial dependency between signals in distinct cortical visual field areas. Standard CF model estimation has some intrinsic limitations in that it cannot estimate the uncertainty associated with each of its parameters. Obtaining the uncertainty will allow identification of model biases, e.g. related to an over- or under-fitting or a co-dependence of parameters, thereby improving the CF prediction. To enable this, here we present a Bayesian framework for the CF model. Using a Markov Chain Monte Carlo (MCMC) approach, we estimate the underlying posterior distribution of the CF parameters and consequently, quantify the uncertainty associated with each estimate. We applied the method and its new Bayesian features to characterize the cortical circuitry of the early human visual cortex of 12 healthy participants that were assessed using 3T fMRI. In addition, we show how the MCMC approach enables the use of effect size (beta) as a data-driven parameter to retain relevant voxels for further analysis. Finally, we demonstrate how our new method can be used to compare different CF models. Our results show that single Gaussian models are favoured over differences of Gaussians (i.e. center-surround) models, suggesting that the cortico-cortical connections of the early visual system do not possess center-surround organisation. We conclude that our new Bayesian CF framework provides a comprehensive tool to improve our fundamental understanding of the human cortical circuitry in health and disease.Highlights□ We present and validate a Bayesian CF framework based on a MCMC approach.□ The MCMC CF approach quantifies the model uncertainty associated with each CF parameter.□ We show how to use effect size beta as a data-driven threshold to retain relevant voxels.□ The cortical connective fields of the human early visual system are best described by a single, circular symmetric, Gaussian.


2019 ◽  
Author(s):  
Sonia Poltoratski ◽  
Frank Tong

AbstractThe detection and segmentation of meaningful figures from their background is a core function of vision. While work in non-human primates has implicated early visual mechanisms in this figure-ground modulation, neuroimaging in humans has instead largely ascribed the processing of figures and objects to higher stages of the visual hierarchy. Here, we used high-field fMRI at 7Tesla to measure BOLD responses to task-irrelevant orientation-defined figures in human early visual cortex, and employed a novel population receptive field (pRF) mapping-based approach to resolve the spatial profiles of two constituent mechanisms of figure-ground modulation: a local boundary response, and a further enhancement spanning the full extent of the figure region that is driven by global differences in features. Reconstructing the distinct spatial profiles of these effects reveals that figure enhancement modulates responses in human early visual cortex in a manner consistent with a mechanism of automatic, contextually-driven feedback from higher visual areas.Significance StatementA core function of the visual system is to parse complex 2D input into meaningful figures. We do so constantly and seamlessly, both by processing information about visible edges and by analyzing large-scale differences between figures and background. While influential neurophysiology work has characterized an intriguing mechanism that enhances V1 responses to perceptual figures, we have a poor understanding of how the early visual system contributes to figure-ground processing in humans. Here, we use advanced computational analysis methods and high-field human fMRI data to resolve the distinct spatial profiles of local edge and global figure enhancement in the early visual system (V1 and LGN); the latter is distinct and consistent a mechanism of automatic, stimulus-driven feedback from higher-level visual areas.


2018 ◽  
Vol 105 ◽  
pp. 218-226 ◽  
Author(s):  
Qingqun Kong ◽  
Jiuqi Han ◽  
Yi Zeng ◽  
Bo Xu

Sign in / Sign up

Export Citation Format

Share Document