initial hydrogen pressure
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 103 (3) ◽  
pp. 74-82
Author(s):  
M.I. Baikenov ◽  
◽  
D.E. Aitbekova ◽  
N.Zh. Balpanova ◽  
A. Tusipkhan ◽  
...  

The activity and selectivity of the bimetallic NiCo/chrysotile catalyst during the hydrogenation of model objects (anthracene and phenanthrene) for 1 hour at an initial hydrogen pressure of 3 MPa and a temperature of 400 °C were studied. The chrysotile mineral used as a substrate for active centers of nickel and cobalt is a waste product of asbestos production at Kostanay Minerals JSC (the Republic of Kazakhstan). The catalyst was characterized by a complex of methods of physical and chemical analysis. The chrysotile mineral consists of nanotubes with an inner diameter of about 10 nm and an outer diameter of about 60 nm. The amount of hydrogenation products is 61.91 %, destruction — 15.08 % and isomerization — 8.37 % during the hydrogenation of anthracene. The amount of hydrogenation products is 26.09 %, and that of destruction is 2.51 % during the hydrogenation of phenanthrene. It was found that the catalyst selectively accelerates the hydrogenation reaction and allows increasing the yields of hydrogenation products. The schemes of the hydrogenation reaction of model objects were drawn up according to the results of gas chromatography-mass spectrometric analysis of hydrogenates.


2021 ◽  
Author(s):  
Murzabek Baikenov ◽  
Darzhan Aitbekova ◽  
Sergey Kim ◽  
Feng Yung Ma ◽  
Nazerke Balpanova ◽  
...  

Abstract The activity and selectivity of the NiCo/chrysotile catalyst during the hydrogenation of model objects (anthracene and phenanthrene) for 1 hour at an initial hydrogen pressure of 3 MPa and a temperature of 400 °C were studied. The catalyst is characterized by a complex of methods of physical and chemical analysis. The chrysotile mineral used as a substrate consists of nanotubes with an inner diameter of about 10 nm and an outer diameter of about 60 nm. When a catalyst is prepared by wet mixing, chrysotile nanotubes can be filled with nickel and cobalt ions from solutions of the corresponding salts. The selectivity of the catalyst in hydrogenation was shown. The yields of the products of hydrogenation and degradation of anthracene are 62% and 15%, respectively. The yields of products of hydrogenation and destruction of phenanthrene are 26% and 2.5%, respectively. According to the results of gas chromatography-mass spectrometric analysis of hydrogenates, the schemes of the hydrogenation reaction of model objects were drawn up.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ruiyu Wang ◽  
Fei Wang ◽  
Ling Liu

Activated carbon (AC) was modified by H2SO4 and used as a support for catalyst. The Fe2S3/AC-T catalyst was prepared by deposition-precipitation method and used to catalyze hydrocracking of coal-related model compound, di(1-naphthyl)methane (DNM). The properties of catalyst were studied by N2 adsorption-desorption, X-ray diffraction, and scanning electron microscopy. The result showed that ferric sulfate and acidic centers had synergetic effect on hydrocracking of DNM when using Fe2S3/AC-T as catalyst, the optimal loading of Fe is 9 wt.%. Hydroconversion of the extraction residue from Guizhou bituminous coal was also studied using Fe2S3/AC-T as the catalyst. The reaction was conducted in cyclohexane under 0.8 Mpa of initial hydrogen pressure at 310°C. The reaction mixture was extracted with petroleum ether and analyzed by GC/MS. Amounts of organic compounds which fall into the categories of homologues of benzene and naphthalene were detected. It suggested that the catalyst could effectively catalyze the cleavage of C-C-bridged bonds.


2013 ◽  
Vol 42 (9) ◽  
pp. 1790-1794
Author(s):  
Hu Yanze ◽  
Dan Guiping ◽  
Du Liang ◽  
Zhang Dong ◽  
Mao Benjiang

2013 ◽  
Vol 11 (1) ◽  
pp. 69-81 ◽  
Author(s):  
Matthew Tymchyshyn ◽  
Zhongshun Yuan ◽  
Chunbao (Charles) Xu

Abstract The reforming of glycerol was investigated using a micro-reactor in the presence of MoCoP/zeolite catalyst. The parameters which were investigated include initial hydrogen pressure, reaction temperature, residence time, and feedstock concentration. The liquid products were separated into water-soluble components and bio-oil by liquid-liquid extraction with water and ethyl acetate. The bio-oil, gaseous products, char, and unreacted glycerol were quantified relative to the initial mass of glycerol feed. The composition of the bio-oil was determined by GC/MS. The optimum conditions for the reforming of glycerol into bio-crude in the presence of MoCoP/zeolite catalyst were found to be: 300°C reaction temperature, 5 MPa initial hydrogen pressure, 60 min reaction time, and 100% glycerol feed. While dilution of the glycerol feedstock with water had a negative effect on bio-oil yield, reforming of pure glycerol produced the highest bio-oil yield (40 wt.% at 300°C, 1 h, and 5 MPa H2). The amount of char deposited on the catalyst decreased with extended reaction time, increased reaction temperature, and elevated initial hydrogen pressure.


2011 ◽  
Vol 364 ◽  
pp. 211-216
Author(s):  
Noraini Hamzah ◽  
Wan Nor Roslam Wan Isahak ◽  
Nadia Farhana Adnan ◽  
Nor Asikin Mohamad Nordin ◽  
Mohamad Bin Kassim ◽  
...  

Catalysts prepared from a variety of noble metal (Os, Ru, Pd and Au) supported on bentonite using impregnation method were studied and it found these series catalyst system gave different activity and selectivity. Among these catalysts, Os/bentonite and Ru/bentonite catalyst showed high activity in glycerol hydrogenolysis reaction at 150°C, 2.0 MPa initial hydrogen pressure for 7 hours. TEM analysis revealed that these nanometal particles catalyst have different in size and result showed that Os and Ru which have smaller average size in range 1-3 nm gave high activity which are 54.1% and 61.2% respectively. In contrast, less activity was obtained when using Pd/bentonite (29.0%) and Au/bentonite (27.8%) catalyst and TEM result showed that Pd and Au nanoparticles have large average particles size (8-10) nm. NH3-TPD analysis revealed that Ru/bentonite and Os/bentonite catalyst gave high total acidity and this behaviour contribute to high activity of the catalyst. This study revealed that size of nanoparticles and catalyst acidity play an important role in the activity and selectivity in glycerol hydrogenolysis reaction. These catalysts were also characterized by BET, XRD and XPS in order to get some physicochemical properties of the catalyst.


2011 ◽  
Vol 236-238 ◽  
pp. 668-671
Author(s):  
Shi Gang Kang ◽  
Zhi Min Zong ◽  
Heng Fu Shui ◽  
Zhi Cai Wang ◽  
Xian Yong Wei

The hydrogenation of preasphaltene (PA), from Chinese Xiaolongtan lignite liquefied heavy product, was investigated with hydrogen storage materials in a batch autoclave. The effects of reaction conditions such as hydrogen storage materials and temperature on the yields of gas+oil, asphaltene, char and the conversions of preasphaltene were discussed. Preliminary studies indicate that increasing temperature not only improves hydrogen donor performance of hydrogen storage materials but also enhances conversion of feedstock PA and gas+oil yield. The conversion of PA and the yield gas+oil get to 72.02% and 41.46%, respectively, under 5% MgH2, 5MPa initial hydrogen pressure, temperature 420°C and reaction time 30min. Meanwhile MgH2 is stronger than NaBH4 in hydrodeoxygenation of PA under the same conditions. Elemental and FTIR analyses were used to illustrate the structural characteristics of feedstock PA and remaining preasphaltene (RPA).


2010 ◽  
Vol 6 (1) ◽  
Author(s):  
Muhammad Hanif ◽  
Yusnitati Yusnitati ◽  
Nasikin Nataadmadja

An analysis of identifying a derivative product of liquefied coal modelhydroprocessing was conducted. For that purpose, an integration gaschromatography flame ionization-nitrogen phosphorous detector and massspectrometry (GC-FID/NPD/MS) was used. Hydroprocessing process wasperformed by vibrating micro autoclave tipe batch using Ni-W/Alumina catalystunder initial hydrogen pressure 6 MPa, reaction temperature 375oC and one hourretention time. The analysis result showed that the predominant reaction werehydrogenation, hydrodenitrogenation (HDN) and hydrodeoxygenation (HDO).The HDO of methyl phenol and ethyl phenol took place faster than the otherhydroprocessing reactions such as HDN of quinoline and aromatic hydrogenation(butyl benzene, naphthalene, phenanthrene dan pyrene). This indicates that thehydrogenation reaction or the cleavage of C-O bonding took place very fast thatalkyl could not be detected in the oil. The HDN reaction or the cleavage of C-Ntook place slower but the the nitrogen containing compound vanished faster dueto selective adsorption of the catalyst. However the hydrogenation reaction ofmono-aromatic took place faster than poly-aromaticKata kunci: gas chromatography, identifikasi senyawa, model minyak sintetis


Sign in / Sign up

Export Citation Format

Share Document