condensation particle counter
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 41)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 21 (23) ◽  
pp. 17513-17528
Author(s):  
Ramon Campos Braga ◽  
Barbara Ervens ◽  
Daniel Rosenfeld ◽  
Meinrat O. Andreae ◽  
Jan-David Förster ◽  
...  

Abstract. Aerosol–cloud interactions contribute to the large uncertainties in current estimates of climate forcing. We investigated the effect of aerosol particles on cloud droplet formation by model calculations and aircraft measurements over the Amazon and over the western tropical Atlantic during the ACRIDICON–CHUVA campaign in September 2014. On the HALO (High Altitude Long Range Research) research aircraft, cloud droplet number concentrations (Nd) were measured near the base of clean and polluted growing convective cumuli using a cloud combination probe (CCP) and a cloud and aerosol spectrometer (CAS-DPOL). An adiabatic parcel model was used to perform cloud droplet number closure studies for flights in differently polluted air masses. Model input parameters included aerosol size distributions measured with an ultra-high sensitive aerosol spectrometer (UHSAS), in combination with a condensation particle counter (CPC). Updraft velocities (w) were measured with a boom-mounted Rosemount probe. Over the continent, the aerosol size distributions were dominated by accumulation mode particles, and good agreement between measured and modeled Nd values was obtained (deviations ≲ 10 %) assuming an average hygroscopicity of κ∼0.1, which is consistent with Amazonian biomass burning and secondary organic aerosol. Above the ocean, fair agreement was obtained assuming an average hygroscopicity of κ∼0.2 (deviations ≲ 16 %) and further improvement was achieved assuming different hygroscopicities for Aitken and accumulation mode particles (κAit=0.8, κacc=0.2; deviations ≲ 10 %), which may reflect secondary marine sulfate particles. Our results indicate that Aitken mode particles and their hygroscopicity can be important for droplet formation at low pollution levels and high updraft velocities in tropical convective clouds.


2021 ◽  
Vol 14 (11) ◽  
pp. 7329-7340
Author(s):  
Fan Mei ◽  
Steven Spielman ◽  
Susanne Hering ◽  
Jian Wang ◽  
Mikhail S. Pekour ◽  
...  

Abstract. Capturing the vertical profiles and horizontal variations of atmospheric aerosols often requires accurate airborne measurements. With the advantage of avoiding health and safety concerns related to the use of butanol or other chemicals, water-based condensation particle counters have emerged to provide measurements under various environments. However, airborne deployments are relatively rare due to the lack of instrument characterization under reduced pressure at flight altitudes. This study investigates the performance of a commercial “versatile” water-based condensation particle counter (vWCPC, model 3789, TSI, Shoreview, MN, USA) under various ambient pressure conditions (500–920 hPa) with a wide range of particle total number concentrations (1500–70 000 cm−3). The effect of conditioner temperature on vWCPC 3789 performance at low pressure is examined through numerical simulation and laboratory experiments. We show that the default instrument temperature setting of 30 ∘C for the conditioner is not suitable for airborne measurement and that the optimal conditioner temperature for low-pressure operation is 27∘. Under the optimal conditioner temperature (27∘), the 7 nm cut-off size is also maintained. Additionally, we show that insufficient droplet growth becomes more significant under the low-pressure operation. The counting efficiency of the vWCPC 3789 can vary up to 20 % for particles of different chemical compositions (e.g., ammonium sulfate and sucrose particles). However, such variation is independent of pressure.


2021 ◽  
Vol 5 (2) ◽  
pp. 904-917
Author(s):  
Anita Maria Magdalena Silaban ◽  
Mila Tejamaya

Measurement of nanoparticles in the personal breathing zone (PBZ) is an effort to assess the risk of nanoparticle exposure in the workplace. Can be done with Direct-Reading as a monitor effort. Indonesia, as one of the countries that also participates in the use of nanotechnology, requires a measurement method that is appropriate to its conditions. Methods: this systematic literature review examines direct-reading methods. Result: two types of instruments were found for direct reading. Results: by conducting an assessment in accordance with the conditions of the Indonesian state, this study recommends Condensation particle counter (CPC) as an instrument that can be used


2021 ◽  
Vol 12 (3) ◽  
pp. 194-201
Author(s):  
V. L. Solomakho ◽  
A. A. Bagdun

The quality of nanomaterials and nanotechnologies is largely determined by the stability of the applied technologies, which, to a large extent, depend on the constancy of particle sizes. In this regard, metrological problems arise that are associated both with measuring the dimensions of the microstructure of aerosols, suspensions and powders, and with ensuring the uniformity of measurements when transferring a unit of a physical quantity from a standard to working measuring instruments. The purpose of this work was to determine and calculate the error in transferring the size of a unit of length when measuring the diameter of nanoparticles.An analyzer of differential electric mobility of particles was determined as a reference measuring instrument for which the calculation was made. It allows the separation of aerosol particles based on the dependence of their electrical mobility on the particle size. In combination with a condensation particle counter, it allows you to scan an aerosol and build a particle size distribution function. This measurement method is the most accurate in the field of measuring the diameters of particles in aerosols, therefore, the error in the transmission of particle size must be set as for a standard.The paper describes the physical principles of measurement by this method and presents an equation for determining the diameter of nanoparticles. Based on this equation, the sources of non-excluded systematic error were identified. Also, an experimental method was used to determine the random component of the measurement error of nanoparticles and to calculate the error in transferring the size of a unit of length when measuring the diameter of nanoparticles.The obtained results will be used for metrological support of standard samples of particle size, ensuring traceability of measurements of aerosol particle counters and for aerosol research.


2021 ◽  
Author(s):  
Fan Mei ◽  
Steven Spielman ◽  
Susanne Hering ◽  
Jian Wang ◽  
Mikhail Pekour ◽  
...  

Abstract. Capturing the vertical profiles and horizontal variations of atmospheric aerosols often requires accurate airborne measurements. With the advantage of avoiding health and safety concerns related to the use of butanol or other chemicals, a water-based condensation particle counter (wCPC) has emerged to provide measurements under various environments. However, the airborne deployment of wCPC is relatively rare due to the lack of characterization of wCPC performance. This study investigates the performance of a commercial "versatile" water CPC (vWCPC Model 3789, TSI) under low-pressure conditions. The effect of conditioner temperature on wCPC performance at low pressure is examined through numerical simulation and laboratory experiments. We show that the default instrument temperature setting of 30 °C for the conditioner is not suitable for airborne measurement and that the optimal conditioner temperature for low-pressure operation is 27 °C. Additionally, we show that insufficient droplet growth becomes more significant under the low-pressure operation. The variation in the chemical composition can contribute up to 20 % uncertainty in the counting efficiency of the wCPC, but this variation is independent of pressure.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5128
Author(s):  
Wojciech Jarosiński ◽  
Piotr Wiśniowski

The article presents the possibility of verifying the efficiency of a diesel particulate filter (DPF) with the use of particle counters using two different measurement methods. The tests were carried out at a vehicle inspection station using a condensation particle counter (CPC) and a diffusion charger (DC). This article presents the results of measurements of 50 vehicles. Removal of the diesel particulate filter from a vehicle is prohibited but is a known phenomenon throughout the EU. The task of periodic technical inspections is to eliminate vehicles that are inoperative and do not meet the environmental protection requirements. However, to date, European vehicle inspection stations do not have an effective tool to counter tampering with diesel particulate filters. The performed measurements allowed us to prove the hypothesis that both methods of measurement allow the effective confirmation of the presence of DPF in a vehicle during the periodic technical inspection of the vehicle and verification of the quality of its operation. In addition, the advantages and disadvantages of both measurement methods were assessed.


2021 ◽  
Vol 14 (8) ◽  
pp. 5429-5445
Author(s):  
Weimeng Kong ◽  
Stavros Amanatidis ◽  
Huajun Mai ◽  
Changhyuk Kim ◽  
Benjamin C. Schulze ◽  
...  

Abstract. Particle size measurement in the low nanometer regime is of great importance to the study of cloud condensation nuclei formation and to better understand aerosol–cloud interactions. Here we present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS consists of a novel differential mobility analyzer and a two-stage condensation particle counter (CPC). The mobility analyzer, a radial opposed-migration ion and aerosol classifier (ROMIAC), can classify nanometer-sized particles with minimal degradation of its resolution and diffusional losses. The ROMIAC operates on a dual high-voltage supply with fast polarity-switching capability to minimize sensitivity to variations in the chemical nature of the ions used to charge the aerosol. Particles transmitted through the mobility analyzer are measured using a two-stage CPC. They are first activated in a fast-mixing diethylene glycol (DEG) stage before being counted by a second detection stage, an ADI MAGIC™ water-based CPC. The transfer function of the integrated instrument is derived from both finite-element modeling and experimental characterization. The nSEMS performance has been evaluated during measurement of transient nucleation and growth events in the CLOUD atmospheric chamber at CERN. We show that the nSEMS can provide high-time- and size-resolution measurement of nanoparticles and can capture the critical aerosol dynamics of newly formed atmospheric particles. Using a soft x-ray bipolar ion source in a compact housing designed to optimize both nanoparticle charging and transmission efficiency as a charge conditioner, the nSEMS has enabled measurement of the contributions of both neutral and ion-mediated nucleation to new particle formation.


Sign in / Sign up

Export Citation Format

Share Document