vitrified bond
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Berend Denkena ◽  
Alexander Krödel-Worbes ◽  
Michael Keitel ◽  
Philipp Wolters

AbstractThe performance of grinding tools in grinding processes and the resulting surface and subsurface properties depend on various factors. The condition of the grinding tool after dressing is one of these factors. However, the influence of the dressing process on the condition of the grinding tool depends on the selected process parameters and is difficult to predict. Therefore, this paper presents an approach to describe the influence of the dressing process on tool wear of toric grinding pins and the resulting subsurface modification. For this purpose, toric grinding pins with a vitrified bond were dressed with two different strategies and the wear and operational behavior were investigated when grinding AISI M3:2 tool steel with two different grinding strategies. In general, the investigations have shown that the dressing process influences the performance and wear behavior differently depending on the grinding strategy used. The degree of clogging is influenced by the geometric contact sizes. In the case of small engagement cross sections with simultaneously large contact lengths the thermal tool load is distributed over a small annular area of the tool and favors clogging. Crushing and additional transverse loading of the grains result in an almost clog-free tool surface. This also leads to a lower G-ratio. Crushing leads to an intensified decrease of the torus radii. The influence of the dressing strategy can also be observed in the induced residual stresses. Toric grinding pins dressed by crushing induce lower compressive residual stresses into the workpiece, which can be attributed to the self-sharpening effect. This effect reduces the mechanical and thermomechanical load of the workpiece during machining.


2021 ◽  
Author(s):  
Jianwei LI ◽  
Wenjun FANG ◽  
Long WAN ◽  
Xiaopan LIU ◽  
Weida HU ◽  
...  

Abstract Ordinary diamond presents the disadvantages of poor self-sharpening and concentrated grinding stress when it is used as an abrasive. Moreover, this kind of diamond cannot be well wetted by the vitrified bond, resulting in a lower holding force of the binder to the abrasives (i.e., the diamond is easy to detach from the binder matrix during grinding). These comprehensive factors not only reduce the surface quality of the processed workpiece, but also hinder the processing efficiency. In order to solve these problems, a new type of porous diamond with high self-sharpening properties was prepared using a thermochemical corrosion method in this study. Our results showed a great improvement in pore volume and specific surface area of the porous diamond compared with ordinary diamond abrasive particles, and the holding force and wettability of vitrified bond to the porous diamond abrasive particles were also improved. Compared with ordinary diamond abrasive tools, porous diamond abrasive tools showed a 29.6% increase in grinding efficiency, a 15.5% decreased in grinding ratio, a 27.5% reduction in workpiece surface roughness, and the scratches on the silicon wafer surface were reduced and refined.


2021 ◽  
Vol 41 (1) ◽  
pp. 300-309
Author(s):  
Ren-Chen Zhou ◽  
Xiao-Pan Liu ◽  
Long Wan ◽  
Peng-Zhao Gao ◽  
Ming-Ya Liao ◽  
...  
Keyword(s):  

2020 ◽  
Vol 108 ◽  
pp. 107917
Author(s):  
Tao Lin ◽  
Shuwen Liu ◽  
Zhenhui Ji ◽  
Huiping Shao ◽  
Junjie Hao

Sign in / Sign up

Export Citation Format

Share Document