tripterygium hypoglaucum
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Junqi Zhao ◽  
Fangling Zhang ◽  
Xiaolin Xiao ◽  
Zhao Wu ◽  
Qichao Hu ◽  
...  

Tripterygium hypoglaucum (Lévl.) Hutch (THH) is believed to play an important role in health care and disease treatment according to traditional Chinese medicine. Moreover, it is also the representative of medicine with both significant efficacy and potential toxicity. This characteristic causes THH hard for embracing and fearing. In order to verify its prospect for clinic, a wide variety of studies were carried out in the most recent years. However, there has not been any review about THH yet. Therefore, this review summarized its characteristic of components, pharmacological effect, pharmacokinetics and toxicity to comprehensively shed light on the potential clinical application. More than 120 secondary metabolites including terpenoids, alkaloids, glycosides, sugars, organic acids, oleanolic acid, polysaccharides and other components were found in THH based on phytochemical research. All these components might be the pharmacological bases for immunosuppression, anti-inflammatory and anti-tumour effect. In addition, recent studies found that THH and its bioactive compounds also demonstrated remarkable effect on obesity, insulin resistance, fertility and infection of virus. The main mechanism seemed to be closely related to regulation the balance of immune, inflammation, apoptosis and so on in various disease. Furthermore, the study of pharmacokinetics revealed quick elimination of the main component triptolide. The feature of celastrol was also investigated by several models. Finally, the side effect of THH was thought to be the key for its limitation in clinical application. A series of reports indicated that multiple organs or systems including liver, kidney and genital system were involved in the toxicity. Its potential serious problem in liver was paid specific attention in recent years. In summary, considering the significant effect and potential toxicity of THH as well as its components, the combined medication to inhibit the toxicity, maintain effect might be a promising method for clinical conversion. Modern advanced technology such as structure optimization might be another way to reach the efficacy and safety. Thus, THH is still a crucial plant which remains for further investigation.


2021 ◽  
Vol 41 ◽  
pp. 92-100
Author(s):  
Hui Zheng ◽  
Juan Wu ◽  
Dan Liu ◽  
Zhijun Zhang ◽  
Ruirong Ye ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Zhang ◽  
Yizhu Dong ◽  
Jintao Lv ◽  
Bing Zhang ◽  
Xiaomeng Zhang ◽  
...  

Abstract Background Tripterygium hypoglaucum Hutch (THH) both has prominent efficacy and unwarranted toxicity in the treatment of autoimmune diseases. Nevertheless, its pharmacological and toxicological profiles still remain to be elucidated. In the current study, the network pharmacology approach was applied to identify synergistic interaction and mechanism of efficacy and toxicity for THH from a holistic perspective. Methods The compounds from THH were collected using literature retrieval and relevant databases. After the production of putative therapeutic targets for dominant diseases and harmful targets of adverse reactions (ADRs) induced by THH, the protein-protein interactions (PPIs), topological analysis and pathway enrichment were established to distinguish the hub targets and pathways. Additionally, the binding activity of candidate ingredients with core targets were revealed by molecular docking simulation. Results A total of eight bioactive components in THH were enrolled, and 633 targets were responsible for rheumatoid arthritis (RA), 1067 targets were corresponding to systemic lupus erythematosus (SLE), 1318 targets of ADRs were obtained. The results of enrichment analysis among THH-RA, THH-SLE and THH-ADR networks indicated that pathway in cancer, hepatitis B, rheumatoid arthritis, and PI3K-Akt signaling pathway might participate in THH for treating RA and SLE. Besides, the mechanism of ADRs that induced by THH were associated with viral carcinogenesis, p53 signaling pathway, PI3K-Akt signaling pathway, and so on. Whereas, these active ingredients of THH exerted the superior binding activities with crucial targets including STAT3, VEGFA, TP53 and MMP9 that functioned synergistically efficacy and toxicity as observed via molecular docking simulation. Conclusion The present research preliminarily interpreted the synergistic interaction of therapeutic and toxicological mechanisms for THH through the comprehensive analysis of relationship and binding activity between primary components and core targets, providing a feasible and promising approach to facilitate the development of toxic and irreplaceable herbs.


Sign in / Sign up

Export Citation Format

Share Document