tangential surface
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 1)

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1607
Author(s):  
Andi Detti Yunianti ◽  
S Suhasman ◽  
A Agussalim ◽  
Musrizal Muin ◽  
Heru Arisandi

One process to improve wood quality is densification or wood surface compression. Our study analyzed the changes in some basic properties of pine wood, including its anatomical structure, density, modulus of elasticity (MOE), and dimensions of cellulose crystallites, after densification following soaking pretreatment in CH3COOH and H2O2 at a concentration of 20%. Samples were sawn in radial and tangential directions for analysis of the wood. The results showed a change in the shape of tracheid cells from hexagonal to oval, as well as damage to the ray cell constituents on the tangential surface. The thickness decrease of the samples was in accordance with the target, which meant that spring-back was short. In general, the tangential boards had a higher density than the radial boards, with a lower MOE and crystallite dimensions. Our findings showed that the densified tangential board was stronger than the radial board.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Forrest L. Anderson

AbstractHuygens' Principle (1678) implies that every point on a wave front serves as a source of secondary wavelets, and the new wave front is the tangential surface to all the secondary wavelets. But two problems arise: portions of wavelets that exist outside of the new wave front combine to form a wake. Also there are two tangential surfaces so wave fronts are propagated in both the forward and backward directions. These problems have not previously been resolved by using a geometrical theory with impulsive wavelets that are in harmony with Huygens' geometrical description. Doing so would provide deeper understanding of and greater intuition into wave propagation, in addition to providing a new model for wave propagation analysis. The interpretation, developed here, of Huygens' geometrical construction shows Huygens' Principle to be correct: as for the wake, the Huygens' wavelets disappear when combined except where they contact their common tangent surfaces, the new propagating wave fronts. As for the backward wave, a source propagates both a forward wave and a backward wave when it is stationary, but it propagates only the forward wave front when it is advancing with a speed equal to the propagation speed of the wave fronts.


2020 ◽  
Vol 19 ◽  

In this paper, we express timelike sweeping surfaces using rotation minimizing frames in Minkowski 3–Space E3 1 . Necessary and sufficient conditions for timelike sweeping surfaces to be developable ruled surfaces are derived. Using these, we analyze the conditions when the resulting timelike developable surface is a cylinder, cone or tangential surface.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 658-673
Author(s):  
Raphaël Pile ◽  
Jean Le Besnerais ◽  
Guillaume Parent ◽  
Emile Devillers ◽  
Thomas Henneron ◽  
...  

AbstractThe Maxwell stress tensor (MST) method is commonly used to accurately compute the global efforts, such as electromagnetic torque ripple and unbalanced electromagnetic forces in electrical machines. The MST has been extended to the estimation of local magnetic surface force for the vibroacoustic design of electrical machines under electromagnetic excitation. In particular, one common air-gap surface force (AGSF) method based on MST is to compute magnetic surface forces on a cylindrical shell in the air gap. However, the AGSF distribution depends on the radius of the cylindrical shell. The main contribution of this study is to demonstrate an analytic transfer law of the AGSF between the air gap and the stator bore radius. It allows us to quantify the error between the magnetic surface force calculated in the middle of the air gap and the magnetic force computed on the stator teeth. This study shows the strong influence of the transfer law on the computed tangential surface force distribution through numerical applications with induction and synchronous electrical machines. Finally, the surface force density at stator bore radius is more accurately estimated when applying the new transfer law on the AGSF.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1118
Author(s):  
Bishnu P. Khanal ◽  
Thi Lieu Le ◽  
Yiru Si ◽  
Moritz Knoche

Russeting is an economically important surface disorder in apple (Malus × domestica Borkh). Indirect evidence suggests an irregular skin structure may be the cause of the phenomenon. The objective of this study was to characterize epidermal and hypodermal cell morphology and the mechanical properties of the skins of apple cultivars of differing russet susceptibility. Dimensions of epidermal and hypodermal cells were determined using microscopy. Stiffness (S), maximum force (Fmax), and maximum strain (εmax) at failure were quantified using uniaxial tensile tests of skin strips. Particularly during early fruit development, epidermal cells (EC) and hypodermal cells (HC) in russet non-susceptible cultivars occurred in greater numbers per unit area than in russet-susceptible ones. The EC and HC were lower in height, shorter in length, and of reduced tangential surface area. There were little differences in S or Fmax between non-susceptible and susceptible cultivars. However, the εmax were higher for the skins of non-susceptible cultivars, than for those of susceptible ones. This difference was larger for the young than for the later growth stages. It is concluded that russet-susceptible cultivars generally have larger cells and a wider distribution of cell sizes for both EC and HC. These result in decreased εmax for the skin during early fruit development when russet susceptibility is high. This increases the chances of skin failures which is known to trigger russeting.


2019 ◽  
Vol 31 (3) ◽  
pp. 1053-1060 ◽  
Author(s):  
Lei Yu ◽  
Yuliang Liang ◽  
Yizhuo Zhang ◽  
Jun Cao

Abstract This study used near-infrared (NIR) spectroscopy to predict mechanical properties of wood. NIR spectra were collected in wavelengths 900–1700 nm, and spectra averaged by radial and tangential surface spectra were used to establish a partial least square (PLS) model based on correlation local embedding (CLE). Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) was used to test the effectiveness of the model. The cross-validation method was used to verify the robustness of the CLE–PLS model. Ninety samples were tested as the calibration set and forty-five as the validation set. The results show that the prediction coefficient of determination ($$R_{p}^{2}$$Rp2) is 0.80 for MOR, and 0.78 for MOE. The ratio of performance to deviation is 2.23 for MOR and 2.15 for MOE.


Author(s):  
P. J. Baddoo ◽  
L. J. Ayton

The potential flow through an infinite cascade of aerofoils is considered as both a direct and inverse problem. In each case, a perturbation expansion about a background uniform flow is assumed where the size of the perturbation is comparable to the aspect ratio of the aerofoils. This perturbation must decay far upstream and also satisfy particular edge conditions, including the Kutta condition at each trailing edge. In the direct problem, the flow field through a cascade of aerofoils of known geometry is calculated. This is solved analytically by recasting the situation as a Riemann–Hilbert problem with only imaginary values prescribed on the chords. As the distance between aerofoils is taken to infinity, the solution is seen to converge to a known analytic expression for a single aerofoil. Analytic expressions for the surface velocity, lift and deflection angle are presented as functions of aerofoil geometry, angle of attack and stagger angle; these show good agreement with numerical results. In the inverse problem, the aerofoil geometry is calculated from a prescribed tangential surface velocity along the chords and upstream angle of attack. This is found via the solution of a singular integral equation prescribed on the chords of the aerofoils.


Sign in / Sign up

Export Citation Format

Share Document