supersonic core length
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 12)

H-INDEX

3
(FIVE YEARS 2)

Author(s):  
Venkata Satya Manikanta Tammabathula ◽  
Venkata Sai Krishna Ghanta ◽  
Tharaka Narendra Sridhar Bandla

Experiments were conducted to find the effect of wall length on the decay behaviour and shock structure of a supersonic wall jet issuing from c-d nozzle of the square-shaped exit. A straight flat wall of width same as the side length of the square was attached to the lip of the nozzle such that the leading edge of the wall and the side of the square aligned properly which allowed the supersonic jet to graze past the flat wall. Experiments were conducted with five different wall lengths, that is, [Formula: see text] = 0.5, 1, 2, 4 and 8. Wall pressure measurements were made from leading edge to the trailing edge of the wall along its centreline. Schlieren flow visualization of the jet flow over the wall for the different wall lengths revealed the shock pattern and the effect of the wall length on the shock structure. The shock structure and jet deflection were significantly affected due to the presence of the wall. There was an upward jet deflection for [Formula: see text] up to [Formula: see text] whereas a downward jet deflection was observed for [Formula: see text]. Noticeable changes in the shock structure were observed for the wall lengths up to 2 D h. The wall length also significantly affected the jet decay characteristics and supersonic core length. Maximum enhancement in jet decay and maximum reduction in supersonic core length resulted when the wall length was [Formula: see text]. However, when the wall length was increased to [Formula: see text], there was a significant reduction in jet decay and a recovery of [Formula: see text]. Presence of wall always resulted a reduction in Lsc irrespective of wall length. The wall effect was to induce a more precipitous pressure drop closer to the nozzle exit, and a more gradual drop farther from it for [Formula: see text] > [Formula: see text].


2021 ◽  
Vol 33 (5) ◽  
pp. 051707
Author(s):  
Arun Kumar Perumal ◽  
Ethirajan Rathakrishnan

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prasanta Kumar Mohanta ◽  
B. T. N. Sridhar ◽  
R. K. Mishra

Abstract Experiments and simulations were carried on C-D nozzles with four different exit geometry aspect ratios to investigate the impact of supersonic decay characteristics. Rectangular and elliptical exit geometries were considered for the study with various aspect ratios. Numerical simulations and Schlieren image study were studied and found the agreeable logical physics of decay and spread characteristics. The supersonic core decay was found to be of different length for different exit geometry aspect ratio, though the throat to exit area ratio was kept constant to maintain the same exit Mach number. The impact of nozzle exit aspect ratio geometry was responsible to enhance the mixing of primary flow with ambient air, without requiring a secondary method to increase the mixing characteristics. The higher aspect ratio resulted in better mixing when compared to lower aspect ratio exit geometry, which led to reduction in supersonic core length. The behavior of core length reduction gives the identical signature for both under-expanded and over-expanded cases. The results revealed that higher aspect ratio of the exit geometry produced smaller supersonic core length. The aspect ratio of cross section in divergent section of the nozzle was maintained constant from throat to exit to reduce flow losses.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prasanta Kumar Mohanta ◽  
B. T. N. Sridhar ◽  
R. K. Mishra

Abstract Experiments and simulations were carried on C-D nozzles with four different exit geometry aspect ratios to investigate the impact of supersonic decay characteristics. Rectangular and elliptical exit geometries were considered for the study with various aspect ratios. Numerical simulations and Schlieren image study were studied and found the agreeable logical physics of decay and spread characteristics. The supersonic core decay was found to be of different length for different exit geometry aspect ratio, though the throat to exit area ratio was kept constant to maintain the same exit Mach number. The impact of nozzle exit aspect ratio geometry was responsible to enhance the mixing of primary flow with ambient air, without requiring a secondary method to increase the mixing characteristics. The higher aspect ratio resulted in better mixing when compared to lower aspect ratio exit geometry, which led to reduction in supersonic core length. The behavior of core length reduction gives the identical signature for both under-expanded and over-expanded cases. The results revealed that higher aspect ratio of the exit geometry produced smaller supersonic core length. The aspect ratio of cross section in divergent section of the nozzle was maintained constant from throat to exit to reduce flow losses.


Author(s):  
Priyadharshini Murugesan ◽  
Arjun Biju Kumar ◽  
Akhil Teja Kambhampati ◽  
Shashank Pillai ◽  
Girish Chandar Chandrasekar ◽  
...  

Correlations for the supersonic jet characteristics, the mean shock cell length and the supersonic core length, have been obtained in terms of the jet parameters. The jet parameters considered in this study are the exit diameter of the nozzle (de), the design Mach number (Me), the nozzle pressure ratio (NPR) and the ratio of specific heats of the medium (γ). The parameters were varied as follows: exit diameters, from 0.5 to 25 mm; Mach number from 1 to 3; the NPR from 2.14 to 35. Initially, working fluid used is cold air and then effect of variation of γ is taken into consideration. The computational model has been validated and then used for all the numerical simulations. A quadratic fit for both characteristics has been obtained which is applicable to any supersonic jet. The correlations developed are valid within the respective ranges of the parameters stated above.


2020 ◽  
Vol 12 (1) ◽  
pp. 119-126
Author(s):  
Prasanta Kumar MOHANTA ◽  
B. T. N. SRIDHAR

Various studies dealing with decay characteristics of circular and noncircular supersonic jets were conducted by previous researchers. But in these studies due emphasis was not given to the hydraulic diameter (Dh), shape factor (ζ) & the nozzle lip parameters which have significant impact on the characteristics of noncircular supersonic jet. In this study, it has been shown that these parameters played a significant role on supersonic core decay characteristics [2, 3, 6] of the jet. The scope of this study included supersonic core length (Lc), decay pattern, due to noncircular shaped nozzle. In the literature, the supersonic jet characterization and the related experimental correlation are available for optimum expansion conditions whereas for other expansion (under and over) conditions the experimental correlation is barely available. While investigating experimentally, new empirical relations were obtained which were the improved forms of earlier correlations for supersonic core length [4]. For experiments, six different types of nozzles (circular, hexagon, square, triangular, elliptical and rectangular) with the same exit to throat area ratio, convergent length and divergent length were used. The results obtained from the experimentally developed correlations were coherent with numerical results, experimental data and flow visualization.


Author(s):  
A Sureshkumar ◽  
BTN Sridhar

Experimental studies were conducted to assess the effect of an annular coflow which surrounded a supersonic core jet in a coaxial jet system. Two different core jet shapes were employed which were circular and equilateral triangular. The core jets were maintained at two different total pressures, i.e. 360 and 550 kPa which corresponded to overexpansion conditions. The effect of coflow which surrounded core jet at a distance larger than the core jet diameter was such that the supersonic core length of the core jet was reduced in contrast to the elongation which was reported by earlier researchers for closer distances between the two jets. The Schlieren images of the coaxial jet system had shown that the region between the jet boundary of core jet and inner boundary of the annular coflow had a strong interaction with core jet which was characterised by a wave system and vortices. This region caused a reduction in supersonic core length and weakening of shock structure in the core jet. These findings have been corroborated by total pressure measurements along the core jet centreline. For the same operational conditions, the coflow caused reduction in supersonic core length more for triangular core jet when compared to that for circular core jet.


Sign in / Sign up

Export Citation Format

Share Document