milk protein gene expression
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 1)

H-INDEX

16
(FIVE YEARS 1)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pengbo Wang ◽  
Jian Wu ◽  
Amber Wood ◽  
Matthew Jones ◽  
Robert Pedley ◽  
...  

AbstractVinculin is an essential component of cell adhesion complexes, where it regulates the strength and stability of adhesions. Whilst the role of vinculin in cell motility is well established, it remains unclear how vinculin contributes to other aspects of tissue function. Here we examine the role of vinculin in mammary epithelial cell phenotype. In these cells, correct adhesion to the extracellular matrix is essential for both the formation of polarised secretory acini and for the transcription of tissue-specific milk protein genes. We show that vinculin, through its interaction with talin, controls milk protein gene expression. However, vinculin is not required for the formation of polarised acini. This work reveals new roles for vinculin that are central to cellular differentiation, and for the ability of cells to interpret their extracellular microenvironment.


2016 ◽  
Vol 28 (9) ◽  
pp. 1241 ◽  
Author(s):  
C. J. Vander Jagt ◽  
J. C. Whitley ◽  
B. G. Cocks ◽  
M. E. Goddard

The tammar wallaby (Macropus eugenii), an Australian marsupial, has evolved a different lactation strategy compared with eutherian mammals, making it a valuable comparative model for lactation studies. The tammar mammary gland was investigated for changes in gene expression during key stages of the lactation cycle using microarrays. Differentially regulated genes were identified, annotated and subsequent gene ontologies, pathways and molecular networks analysed. Major milk-protein gene expression changes during lactation were in accord with changes in milk-protein secretion. However, other gene expression changes included changes in genes affecting mRNA stability, hormone and cytokine signalling and genes for transport and metabolism of amino acids and lipids. Some genes with large changes in expression have poorly known roles in lactation. For instance, SIM2 was upregulated at lactation initiation and may inhibit proliferation and involution of mammary epithelial cells, while FUT8 was upregulated in Phase 3 of lactation and may support the large increase in milk volume that occurs at this point in the lactation cycle. This pattern of regulation has not previously been reported and suggests that these genes may play a crucial regulatory role in marsupial milk production and are likely to play a related role in other mammals.


2012 ◽  
Vol 57 (No. 10) ◽  
pp. 469-480 ◽  
Author(s):  
T. Sigl ◽  
H.H.D. Meyer ◽  
S. Wiedemann

&nbsp;The objective of the present study was to refine a previously developed method to isolate primary bovine mammary epithelial cells (pBMEC) from fresh milk. Using this method, it was tested whether the number of pBMEC and the relation of recovered pBMEC to total somatic cell count vary within the individual lactation stages. Furthermore, the expression levels of the milk protein genes during the first twenty weeks of lactation were determined by quantitative PCR method. A total number of 152 morning milk samples were obtained from twenty-four Holstein-Friesian cows during the first 20 weeks of lactation (day 8, 15, 26, 43, 57, 113, and 141 postpartum). Numbers of extracted pBMEC were consistent at all time-points (1.1 &plusmn; 0.06 to 1.4 &plusmn; 0.03 &times;10<sup>3</sup>/ml) and an average value of RNA integrity number (RIN) was 6.3 &plusmn; 0.3. Percentage of pBMEC in relation to total milk cells (2.0 &plusmn; 0.2 to 6.7 &plusmn; 1.0%) correlated with milk yield. Expression patterns of the casein genes alpha (&alpha;)<sub>S1</sub>, (&alpha;)<sub>S2</sub>, beta (&beta;), and kappa (&kappa;) (CSN1S1, CSN1S2, CSN2, CSN3, respectively) and the whey protein genes &alpha;-lactalbumin (LALBA) and progestagen-associated endometrial protein (PAEP; known as &beta;-lactoglobulin) were shown to be comparable, i.e. transcripts of all six milk protein genes were found to peak during the first two weeks of lactation and to decline continuously towards mid lactation. However, mRNA levels were different among genes with CSN3 showing the highest and LALBA the lowest abundance. We hypothesized that milk protein gene expression has a pivotal effect on milk protein composition with no influence on milk protein concentration. This paper is the first to describe milk protein gene expression during lactation in pBMEC collected in milk. Future studies will be needed to understand molecular mechanisms in pBMEC including regulation of expression and translation throughout lactation. &nbsp;


2011 ◽  
Vol 43 (8) ◽  
pp. 381-391 ◽  
Author(s):  
Patricia D. Maningat ◽  
Partha Sen ◽  
Monique Rijnkels ◽  
Darryl L. Hadsell ◽  
Molly S. Bray ◽  
...  

Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7–10 days.


2011 ◽  
Vol 209 (1) ◽  
pp. 45-54 ◽  
Author(s):  
L L Hernandez ◽  
J L Collier ◽  
A J Vomachka ◽  
R J Collier ◽  
N D Horseman

Serotonin (5-HT) is a homeostatic regulator of lactation. Selective 5-HT reuptake inhibitors (SSRI) are commonly prescribed pharmaceuticals that inhibit activity of the 5-HT reuptake transporter, increasing cellular exposure to 5-HT. Use of SSRIs has been shown to alter lactation performance in humans and 5-HT has been shown to reduce milk yield in cattle. However, it has not been determined how SSRI treatments affect the bovine mammary gland. We evaluated the effects of SSRI (fluoxetine (FLX)) administration on tight junctions (TJs) and milk protein gene expression in a lactogenic culture model, using primary bovine mammary epithelial cells (pBMEC). Additionally, we evaluated the effects of intramammary infusions of FLX and 5-hydroxytryptophan on milk production and TJ status in multiparous Holstein cows at dry-off. Treatment of pBMEC cultured on permeable membranes disrupted TJs, as measured by transepithelial resistance and immunostaining for zona occludens 1. Correspondingly, treatment of ‘3D’, collagen-embedded lactogenic cultures of pBMEC with FLX suppressed milk protein gene expression (α-lactalbumin and β-casein) in a concentration-dependent manner. Finally, intramammary treatment of Holstein cows with FLX resulted in an accelerated rate of milk decline. Additionally, TJ permeability increased in FLX-treated animals, as measured by plasma lactose and milk Na+ and K+ levels. Results of these experiments imply that SSRI administration accelerates the rate of mammary gland involution through disassembly of TJs and inhibition of milk protein gene expression in vitro and in vivo, leading to reduction of milk yield.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1652-1660 ◽  
Author(s):  
Dai Chida ◽  
Keiko Miyoshi ◽  
Tsuyoshi Sato ◽  
Tetsuya Yoda ◽  
Takefumi Kikusui ◽  
...  

Abstract Maternal glucocorticoids are critical for fetal development, but overexpression can be deleterious. Previously we established a mouse line deficient in melanocortin receptor 2 (MC2R). MC2R−/− mice have undetectable levels of corticosterone despite high levels of ACTH and defects resembling those in patients with familial glucocorticoid deficiency. Here we analyzed the role of glucocorticoids in pregnancy, parturition, lactation, and nurturing in MC2R−/− mice. MC2R−/− mice were fertile and produced normal litters when crossed with MC2R+/+ mice. However, MC2R−/− females crossed with MC2R−/− males had no live births, and approximately 20% of the embryos at d 18.5 of pregnancy were of normal body size but were dead when born. MC2R−/− pregnant females crossed with MC2R+/+ males had detectable serum corticosterone levels, suggesting the transplacental passage of corticosterone from fetus to mother. MC2R+/− pups delivered from MC2R−/− females crossed with MC2R+/+ males mice thrived poorly with MC2R−/− mothers but grew to adulthood when transferred to foster mothers after birth, suggesting that MC2R−/− females are poor mothers or cannot nurse. MC2R−/− females had normal alveoli, but penetration of mammary epithelium into fat pads and expression of milk proteins were reduced. Myoepithelial cells, which force milk out of the alveoli, were fully developed and differentiated. Pup retrieval behavior was normal in MC2R−/− mice. Exogenous corticosterone rescued expression of milk proteins in MC2R−/− mothers, and the pups of treated mothers grew to adulthood. Our results reveal the importance of glucocorticoids for fetal survival late in pregnancy, mammary gland development, and milk protein gene expression.


Sign in / Sign up

Export Citation Format

Share Document