gaseous transmitters
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 20 (3) ◽  
pp. 70-76
Author(s):  
V. V. Zinchuk ◽  
E. S. Biletskaya

Introduction. Ozone is a physiological factor that can change hemoglobin oxygen affinity and the formation of gaseous transmitters (NO, H2S). The aim is to study the effect of ozone with gaseous transmitters donors on oxygen-dependent processes in the blood under hypoxic conditions in vitro. Materials and methods. Blood samples were divided into 6 groups of 3 ml each. Groups 2, 4, 5, 6 were pretreated with a deoxygenating gas mixture (5.5 % CO2; 94.5 % N2). In groups 3, 4, 5, 6, ozonized isotonic sodium chloride solution (with an ozone concentration of 6 mg/l) was added, and in groups 5 and 6, the donors of gas transmitters nitroglycerin and sodium hydrosulfide, respectively, were additionally introduced. Results. Pre-deoxygenation reduces the effect of ozone on oxygen transport in the blood. Nitroglycerin prevents this effect. The action of ozone under hypoxic conditions leads to an increase of content of NO3-/NO2- and H2S, and combination with nitroglycerin and sodium hydrosulfide increase these parameters. Deoxygenation due to ozone reduces parameters of lipid peroxidation (malonic dialdehyde, diene conjugates), retinol and α-tocopherol, and the same result in the nitroglycerin group. Conclusion. Under hypoxic conditions, a decrease in the effect of ozone on oxygen-dependent processes is reported. Nitroglycerin reduces its manifestation, while sodium hydrosulfide does not have a similar effect.


2021 ◽  
Vol 22 (11) ◽  
pp. 6029
Author(s):  
Alicja Nowaczyk ◽  
Magdalena Kowalska ◽  
Jacek Nowaczyk ◽  
Grzegorz Grześk

The year 2021 is the 100th anniversary of the confirmation of the neurotransmission phenomenon by Otto Loewi. Over the course of the hundred years, about 100 neurotransmitters belonging to many chemical groups have been discovered. In order to celebrate the 100th anniversary of the confirmation of neurotransmitters, we present an overview of the first two endogenous gaseous transmitters i.e., nitric oxide, and carbon monoxide, which are often termed as gasotransmitters.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1134
Author(s):  
Mengdan Zhang ◽  
Ruirui Qiao ◽  
Jinming Hu

Metal–organic frameworks (MOFs) comprising metal ions or clusters coordinated to organic ligands have become a class of emerging materials in the field of biomedical research due to their bespoke compositions, highly porous nanostructures, large surface areas, good biocompatibility, etc. So far, many MOFs have been developed for imaging and therapy purposes. The unique porous nanostructures render it possible to adsorb and store various substances, especially for gaseous molecules, which is rather challenging for other types of delivery vectors. In this review, we mainly focus on the recent development of MOFs for controlled release of three gaseous transmitters, namely, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Although these gaseous molecules have been known as air pollutants for a long time, much evidence has been uncovered regarding their important physiological functions as signaling molecules. These signaling molecules could be either physically absorbed onto or covalently linked to MOFs, allowing for the release of loaded signaling molecules in a spontaneous or controlled manner. We highlight the designing concept by selective examples and display their potential applications in many fields such as cancer therapy, wound healing, and anti-inflammation. We hope more effort could be devoted to this emerging fields to develop signaling molecule-releasing MOFs with practical applications.


2019 ◽  
Vol 121 (5) ◽  
pp. 604-610
Author(s):  
Sergei G. Kalinichenko ◽  
Natalya Yu. Matveeva ◽  
Igor I. Pushchin
Keyword(s):  

2019 ◽  
Vol 72 (8) ◽  
pp. 1473-1476
Author(s):  
Nataliya Matolinets ◽  
Helen Sklyarova ◽  
Eugene Sklyarov ◽  
Andrii Netliukh

Introduction: Polytrauma patients have high risk of shock, septic complications and death during few years of follow-up. In recent years a lot of attention is paid to gaseous transmitters, among which are nitrogen oxide (NO) and hydrogen sulfide (H2S). It is known that the rise of NO and its metabolites levels occurs during the acute period of polytrauma. Nitric oxide and hydrogen sulfide are produced in different cell types, among which are lymphocytes. The aim: To investigate the levels of NO, NOS, iNOS, еNOS, H2S in lymphocytes lysate in patients at the moment of hospitalization and 24 hours after trauma. Materials and methods: We investigated the levels of NO, NO-synthase, inducible NO-synthase, endothelial NO-synthase, H2S in lymphocytes lysate in patients at the moment of hospitalization and 24 hours after trauma. Results: The study included 20 patients with polytrauma who were treated in the intensive care unit (ICU) of the Lviv Emergency Hospital. Tissue injury was associated with an increased production of NO, NOS, iNOS, еNOS during the acute period of polytrauma. At the same time, the level of H2S decreased by the end of the first day of traumatic injury. Conclusions: In acute period of polytrauma, significant increasing of iNOS and eNOS occurs with percentage prevalence of iNOS over eNOS on the background of H2S decreasing.


2018 ◽  
Vol 165 (6) ◽  
pp. 725-727
Author(s):  
A. S. Ivanova ◽  
O. G. Sitnikova ◽  
I. G. Popova ◽  
S. B. Nazarov
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Dan Wu ◽  
Qingxun Hu ◽  
Deqiu Zhu

Hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as important regulators in the cardiovascular system, although they were historically considered as toxic gases. As gaseous transmitters, H2S and NO share a wide range of physical properties and physiological functions: they penetrate into the membrane freely; they are endogenously produced by special enzymes, they stimulate endothelial cell angiogenesis, they regulate vascular tone, they protect against heart injury, and they regulate target protein activity via posttranslational modification. Growing evidence has determined that these two gases are not independent regulators but have substantial overlapping pathophysiological functions and signaling transduction pathways. H2S and NO not only affect each other’s biosynthesis but also produce novel species through chemical interaction. They play a regulatory role in the cardiovascular system involving similar signaling mechanisms or molecular targets. However, the natural precise mechanism of the interactions between H2S and NO remains unclear. In this review, we discuss the current understanding of individual and interactive regulatory functions of H2S and NO in biosynthesis, angiogenesis, vascular one, cardioprotection, and posttranslational modification, indicating the importance of their cross-talk in the cardiovascular system.


2018 ◽  
Vol 19 (9) ◽  
pp. 2605 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Sara Dempsey ◽  
Zdravka Daneva ◽  
Maleeha Azam ◽  
Ningjun Li ◽  
...  

The gasotransmitters are a family of gaseous signaling molecules which are produced endogenously and act at specific receptors to play imperative roles in physiologic and pathophysiologic processes. As a well-known gasotransmitter along with hydrogen sulfide and carbon monoxide, nitric oxide (NO) has earned repute as a potent vasodilator also known as endothelium-derived vasorelaxant factor (EDRF). NO has been studied in greater detail, from its synthesis and mechanism of action to its physiologic, pathologic, and pharmacologic roles in different disease states. Different animal models have been applied to investigate the beneficial effects of NO as an antihypertensive, renoprotective, and antihypertrophic agent. NO and its interaction with different systems like the renin–angiotensin system, sympathetic nervous system, and other gaseous transmitters like hydrogen sulfide are also well studied. However, links that appear to exist between the endocannabinoid (EC) and NO systems remain to be fully explored. Experimental approaches using modulators of its synthesis including substrate, donors, and inhibitors of the synthesis of NO will be useful for establishing the relationship between the NO and EC systems in the cardiovascular and renal systems. Being a potent vasodilator, NO may be unique among therapeutic options for management of hypertension and resulting renal disease and left ventricular hypertrophy. Inclusion of NO modulators in clinical practice may be useful not only as curatives for particular diseases but also for arresting disease prognoses through its interactions with other systems.


Sign in / Sign up

Export Citation Format

Share Document