scholarly journals A unified evolutionary origin for the ubiquitous protein transporters SecY and YidC

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Aaron J. O. Lewis ◽  
Ramanujan S. Hegde

Abstract Background Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. Results The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY’s halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC’s sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. Conclusions SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.

Science ◽  
2018 ◽  
Vol 363 (6422) ◽  
pp. 84-87 ◽  
Author(s):  
Samuel Itskanov ◽  
Eunyong Park

The Sec61 protein-conducting channel mediates transport of many proteins, such as secretory proteins, across the endoplasmic reticulum (ER) membrane during or after translation. Posttranslational transport is enabled by two additional membrane proteins associated with the channel, Sec63 and Sec62, but its mechanism is poorly understood. We determined a structure of the Sec complex (Sec61-Sec63-Sec71-Sec72) from Saccharomyces cerevisiae by cryo–electron microscopy (cryo-EM). The structure shows that Sec63 tightly associates with Sec61 through interactions in cytosolic, transmembrane, and ER-luminal domains, prying open Sec61’s lateral gate and translocation pore and thus activating the channel for substrate engagement. Furthermore, Sec63 optimally positions binding sites for cytosolic and luminal chaperones in the complex to enable efficient polypeptide translocation. Our study provides mechanistic insights into eukaryotic posttranslational protein translocation.


2003 ◽  
Vol 31 (6) ◽  
pp. 1248-1252 ◽  
Author(s):  
F.J.L. Lecomte ◽  
N. Ismail ◽  
S. High

Whereas protein biogenesis at the endoplasmic reticulum is well understood in the case of secretory proteins and simple membrane proteins, much less is known about the synthesis of multi-spanning integral membrane proteins. While it is clear that the multiple membrane-spanning domains of these proteins must be inserted into the lipid bilayer during biosynthesis, the mechanism by which their integration is achieved and their subsequent folding/assembly are poorly defined. In this review, we summarize our current understanding of protein synthesis at the endoplasmic reticulum and highlight specific features that are relevant to the biogenesis of multi-spanning membrane proteins.


2012 ◽  
Vol 28 (11) ◽  
pp. 866
Author(s):  
Jie HENG ◽  
Yan WU ◽  
Xianping WANG ◽  
Kai ZHANG

1994 ◽  
Vol 27 (2) ◽  
pp. 157-218 ◽  
Author(s):  
Mark A. Lemmon ◽  
Donald M. Engelman

The membrane-spanning portions of many integral membrane proteins consist of one or a number of transmembrane α-helices, which are expected to be independently stable on thermodynamic grounds. Side-by-side interactions between these transmembrane α-helices are important in the folding and assembly of such integral membrane proteins and their complexes. In considering the contribution of these helix–helix interactions to membrane protein folding and oligomerization, a distinction between the energetics and specificity should be recognized. A number of contributions to the energetics of transmembrane helix association within the lipid bilayer will be relatively non-specific, including those resulting from charge–charge interactions and lipid–packing effects. Specificity (and part of the energy) in transmembrane α-helix association, however, appears to rely mainly upon a detailed stereochemical fit between sets of dynamically accessible states of particular helices. In some cases, these interactions are mediated in part by prosthetic groups.


1999 ◽  
Vol 79 (1) ◽  
pp. S23-S45 ◽  
Author(s):  
DAVID N. SHEPPARD ◽  
MICHAEL J. WELSH

Sheppard, David N., and Michael J. Welsh. Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79 , Suppl.: S23–S45, 1999. — The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl− channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the genetic disease cystic fibrosis. The CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. Here we review the structure and function of this unique channel, with a focus on how the various domains contribute to channel function. The MSDs form the channel pore, phosphorylation of the R domain determines channel activity, and ATP hydrolysis by the NBDs controls channel gating. Current knowledge of CFTR structure and function may help us understand better its mechanism of action, its role in electrolyte transport, its dysfunction in cystic fibrosis, and its relationship to other ABC transporters.


1989 ◽  
Vol 67 (6) ◽  
pp. 306-310 ◽  
Author(s):  
Morris F. Manolson ◽  
Judith M. Percy ◽  
David K. Apps ◽  
Xiao-Song Xie ◽  
Dennis K. Stone ◽  
...  

The evolution of the endomembrane systems of eukaryotic cells can be examined by exploring the evolutionary origins of the endomembrane H+-ATPases. Recent studies suggest that certain polypeptides are common to all H+ pumps of this type. Tonoplast H+ -ATPase from Beta vulgaris L. was purified and antibodies raised to two of its subunits. Each of these antisera reacted with a polypeptide of the corresponding size in bovine chromaffin granules, bovine clathrincoated vesicles, and yeast vacuolar membranes, suggesting common structural features and a common ancestor for endomembrane H+-ATPases of different organelles and different kingdoms. The antiserum raised against the 57-kDa polypeptide of plant tonoplast H+ -ATPase also reacted with subunit "a" of the H+-ATPase from the obligately anaerobic bacterium Clostridium pasteurianum and to the α subunit of the H+ -ATPase from Escherichia coli. There was no reactivity with chloroplast or mitochondrial ATPases. These results are discussed in relation to recent sequence data which suggest that endomembrane H+-ATPases may be evolutionarily related to the F0F1 ATPases.Key words: H+ -ATPase, evolution, immunology, vacuole, endomembrane.


2017 ◽  
Vol 6 (1) ◽  
pp. 75-92 ◽  
Author(s):  
Elka R. Georgieva

AbstractCellular membranes and associated proteins play critical physiological roles in organisms from all life kingdoms. In many cases, malfunction of biological membranes triggered by changes in the lipid bilayer properties or membrane protein functional abnormalities lead to severe diseases. To understand in detail the processes that govern the life of cells and to control diseases, one of the major tasks in biological sciences is to learn how the membrane proteins function. To do so, a variety of biochemical and biophysical approaches have been used in molecular studies of membrane protein structure and function on the nanoscale. This review focuses on electron paramagnetic resonance with site-directed nitroxide spin-labeling (SDSL EPR), which is a rapidly expanding and powerful technique reporting on the local protein/spin-label dynamics and on large functionally important structural rearrangements. On the other hand, adequate to nanoscale study membrane mimetics have been developed and used in conjunction with SDSL EPR. Primarily, these mimetics include various liposomes, bicelles, and nanodiscs. This review provides a basic description of the EPR methods, continuous-wave and pulse, applied to spin-labeled proteins, and highlights several representative applications of EPR to liposome-, bicelle-, or nanodisc-reconstituted membrane proteins.


2008 ◽  
Vol 4 (2) ◽  
pp. 179-182 ◽  
Author(s):  
Reuben Clements ◽  
Thor-Seng Liew ◽  
Jaap Jan Vermeulen ◽  
Menno Schilthuizen

The manner in which a gastropod shell coils has long intrigued laypersons and scientists alike. In evolutionary biology, gastropod shells are among the best-studied palaeontological and neontological objects. A gastropod shell generally exhibits logarithmic spiral growth, right-handedness and coils tightly around a single axis. Atypical shell-coiling patterns (e.g. sinistroid growth, uncoiled whorls and multiple coiling axes), however, continue to be uncovered in nature. Here, we report another coiling strategy that is not only puzzling from an evolutionary perspective, but also hitherto unknown among shelled gastropods. The terrestrial gastropod Opisthostoma vermiculum sp. nov. generates a shell with: (i) four discernable coiling axes, (ii) body whorls that thrice detach and twice reattach to preceding whorls without any reference support, and (iii) detached whorls that coil around three secondary axes in addition to their primary teleoconch axis. As the coiling strategies of individuals were found to be generally consistent throughout, this species appears to possess an unorthodox but rigorously defined set of developmental instructions. Although the evolutionary origins of O. vermiculum and its shell's functional significance can be elucidated only once fossil intermediates and live individuals are found, its bewildering morphology suggests that we still lack an understanding of relationships between form and function in certain taxonomic groups.


Sign in / Sign up

Export Citation Format

Share Document