drug efflux
Recently Published Documents


TOTAL DOCUMENTS

719
(FIVE YEARS 177)

H-INDEX

68
(FIVE YEARS 9)

2022 ◽  
pp. 487-532
Author(s):  
Armel Jackson Seukep ◽  
Christophe Dongmo Fokoua-Maxime ◽  
Hélène Gueaba Mbuntcha ◽  
Guilin Chen ◽  
Jules Clément Nguedia Assob ◽  
...  

2021 ◽  
Author(s):  
Adi Zheng ◽  
Gilles Dubuis ◽  
Maria Georgieva ◽  
Carla Susana Mendes Ferreira ◽  
Marc Serulla ◽  
...  

High-density lipoproteins (HDLs) prevent cell death induced by a variety of cytotoxic drugs. The underlying mechanisms are however still poorly understood. Here we present evidence that HDLs efficiently protect cells against thapsigargin (TG), a sarco/ endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) inhibitor, by extracting the drug from cells. Drug efflux could also be triggered to some extent by low-density lipoproteins and serum. HDLs did not reverse the non-lethal mild ER stress response induced by low TG concentrations or by SERCA knock-down but HDLs inhibited the toxic SERCA-independent effects mediated by high TG concentrations. HDLs could extract other lipophilic compounds, but not hydrophilic substances This work shows that HDLs utilize their capacity of loading themselves with lipophilic compounds, akin to their ability to extract cellular cholesterol, to reduce the cell content of hydrophobic drugs. This can be beneficial if lipophilic xenobiotics are toxic but may be detrimental to the therapeutic benefit of lipophilic drugs such as glibenclamide.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Vartika Srivastava ◽  
Aijaz Ahmad

Background: Candida auris, a decade old Candida species, has been identified globally as a significant nosocomial multidrug resistant (MDR) pathogen responsible for causing invasive outbreaks. Biofilms and over expression of efflux pumps such as Major Facilitator Superfamily and ATP Binding Cassette are known to cause multidrug resistance in Candida species, including C. auris. Therefore, targeting these factors may prove an effective approach to combat MDR in C. auris. Methods: In this study, 25 clinical isolates of C. auris from different hospitals of South Africa were used. Antifungal susceptibility profile of all the isolates against commonly used drugs was determined following CLSI recommended guidelines. Rhodamine-6-G extracellular efflux and intracellular accumulation assays were used to study active drug efflux mechanism. We further studied the role of farnesol in modulating development of biofilms and drug efflux in C. auris. Down-regulation of biofilm- and efflux pump- associated genes by farnesol was also investigated. CLSM analysis for examining C. auris biofilm architecture among treated and untreated isolates. Results: Most of the isolates (twenty-two) were found resistant to FLZ whereas five were resistant to AmB. All the isolates were found capable of biofilm formation and ornamented with active drug efflux mechanism. The MIC for planktonic cells ranged from 62.5-125 mM and for sessile cells was 125 mM (0 h and 4 h biofilm) and 500 mM (12 h and 24 h biofilm), CLSM studies also confirmed these findings. Farnesol also blocked efflux pumps and down-regulated biofilm- and efflux pump- associated genes. Conclusion: Modulation of biofilm- and efflux pump- associated genes by farnesol represent a promising approach in combating C. auris infection.


Author(s):  
Nisha Mahey ◽  
Rushikesh Tambat ◽  
Nishtha Chandal ◽  
Dipesh Kumar Verma ◽  
Krishan Gopal Thakur ◽  
...  

Staphylococcus aureus is a frequent pathogen bacterium and the predominant cause of worsened nosocomial infections. Efflux pumps contribute to drug efflux and are reportedly associated with biofilm formation, thereby promoting difficult-to-treat biofilm-associated S. aureus infections.


2021 ◽  
Vol 14 (12) ◽  
pp. 1292
Author(s):  
Anunay J. Pulukuri ◽  
Anthony J. Burt ◽  
Larissa K. Opp ◽  
Colin M. McDowell ◽  
Maryam Davaritouchaee ◽  
...  

Multidrug-Resistant (MDR) cancers attenuate chemotherapeutic efficacy through drug efflux, a process that transports drugs from within a cell to the extracellular space via ABC (ATP-Binding Cassette) transporters, including P-glycoprotein 1 (P-gp or ABCB1/MDR1). Conversely, Toll-Like Receptor (TLR) agonist immunotherapies modulate activity of tumor-infiltrating immune cells in local proximity to cancer cells and could, therefore, benefit from the enhanced drug efflux in MDR cancers. However, the effect of acquired drug resistance on TLR agonist efflux is largely unknown. We begin to address this by investigating P-gp mediated efflux of TLR 7/8 agonists. First, we used functionalized liposomes to determine that imidazoquinoline TLR agonists Imiquimod, Resiquimod, and Gardiquimod are substrates for P-gp. Interestingly, the least potent imidazoquinoline (Imiquimod) was the best P-gp substrate. Next, we compared imidazoquinoline efflux in MDR cancer cell lines with enhanced P-gp expression relative to parent cancer cell lines. Using P-gp competitive substrates and inhibitors, we observed that imidazoquinoline efflux occurs through P-gp and, for Imiquimod, is enhanced as a consequence of acquired drug resistance. This suggests that enhancing efflux susceptibility could be an important consideration in the rational design of next generation immunotherapies that modulate activity of tumor-infiltrating immune cells.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010144
Author(s):  
Sweta Roy ◽  
Ali Adem Bahar ◽  
Huan Gu ◽  
Shikha Nangia ◽  
Karin Sauer ◽  
...  

Persistent bacterial infections do not respond to current antibiotic treatment and thus present a great medical challenge. These conditions have been linked to the formation of dormant subpopulations of bacteria, known as persister cells, that are growth-arrested and highly tolerant to conventional antibiotics. Here, we report a new strategy of persister control and demonstrate that minocycline, an amphiphilic antibiotic that does not require active transport to penetrate bacterial membranes, is effective in killing Escherichia coli persister cells [by 70.8 ± 5.9% (0.53 log) at 100 μg/mL], while being ineffective in killing normal cells. Further mechanistic studies revealed that persister cells have reduced drug efflux and accumulate more minocycline than normal cells, leading to effective killing of this dormant subpopulation upon wake-up. Consistently, eravacycline, which also targets the ribosome but has a stronger binding affinity than minocycline, kills persister cells by 3 logs when treated at 100 μg/mL. In summary, the findings of this study reveal that while dormancy is a well-known cause of antibiotic tolerance, it also provides an Achilles’ heel for controlling persister cells by leveraging dormancy associated reduction of drug efflux.


2021 ◽  
Author(s):  
◽  
Jessica J. Field

<p>Microtubule-stabilizing agents (MSAs) are extremely important chemotherapeutic drugs since microtubules (MTs) are one of the most successful cancer drug targets. Currently there are four MSAs that are clinically used for the treatment of cancer. Cancer cells, however, can develop resistance towards these drugs, the most common being over-expression of the P-glycoprotein drug efflux pump. Zampanolide (ZMP), a novel secondary metabolite isolated from a marine sponge consists of a 20-membered macrolide ring with an unusual N-acyl-hemiaminal side chain. It is a potent MSA with similar cellular effects to the clinically relevant MSAs, Taxol®, Taxotere® and Ixempra®. ZMP has a small number of stereogenic centers and therefore is relatively easier to synthesize than other macrolide natural products. Using established cancer cell lines and isolated bovine brain tubulin ZMP in the present study was further characterized as a potential anti-cancer compound and was shown to have significant advantages over currently used MSAs. These studies provided insight into how this important drug class induces MT assembly, suggesting strategies for the development of new generation MSAs for use in the clinic. ZMP and its less active analog dactylolide competed with paclitaxel for binding to MTs and represented a novel MSA chemotype. Unlike traditional taxoid site ligands, ZMP remained significantly more cytotoxic in cell lines with mutations in the taxoid binding site, and behaved in an unusual manner in vitro. This was later found to be due to its mechanism of binding which involved covalent modification of two amino acids in the taxoid binding site, histidine 229 as the major product and asparagine 228 as the minor product. Alkylation of both these luminal site residues was also detected in unassembled tubulin, providing the first direct evidence that the taxoid binding site exists in unassembled tubulin and suggesting that the induction of MT nucleation by MSAs may proceed through an allosteric mechanism. X-ray crystallography data confirmed the presence of this binding site in unassembled tubulin and indicated that covalent modification occurs at C9 of ZMP with the NE2 of the histidine side chain. The potent stabilization of MTs observed with ZMP occurred due to its side chain interaction with the stabilizing M-loop of β-tubulin. In unassembled tubulin the M-loop is unordered. Upon ZMP binding, it is restructured into a short, well-defined helix. It is this restructuring that leads to the potent stabilization by ZMP and most likely other MSAs, including those currently used in the clinic. This information provides a basis for structure-guided drug engineering to design and develop new generation MSAs with potent stabilizing activity. In addition, covalent binding of ZMP means that it is able to avoid drug efflux pumps and thus evade the main mechanism of resistance presented to MSAs in the clinic. It was shown by studying structure-activity relationships that there are a number of key chemical motifs in ZMP responsible for its potent activity. Simpler analog structures that retain significant stabilizing activity could be used as lead compounds for further drug development. Moreover, MSAs have clinically relevant anti-angiogenic and vascular-disrupting properties, and ZMP was also shown to potently inhibit cell migration and thus have possible benefits as a vasculature-targeting compound. It was concluded that ZMP is a potent covalently-binding MSA in both cells and in vitro. Given these promising results, further preclinical development of the compound is warranted.</p>


2021 ◽  
Author(s):  
◽  
Jessica J. Field

<p>Microtubule-stabilizing agents (MSAs) are extremely important chemotherapeutic drugs since microtubules (MTs) are one of the most successful cancer drug targets. Currently there are four MSAs that are clinically used for the treatment of cancer. Cancer cells, however, can develop resistance towards these drugs, the most common being over-expression of the P-glycoprotein drug efflux pump. Zampanolide (ZMP), a novel secondary metabolite isolated from a marine sponge consists of a 20-membered macrolide ring with an unusual N-acyl-hemiaminal side chain. It is a potent MSA with similar cellular effects to the clinically relevant MSAs, Taxol®, Taxotere® and Ixempra®. ZMP has a small number of stereogenic centers and therefore is relatively easier to synthesize than other macrolide natural products. Using established cancer cell lines and isolated bovine brain tubulin ZMP in the present study was further characterized as a potential anti-cancer compound and was shown to have significant advantages over currently used MSAs. These studies provided insight into how this important drug class induces MT assembly, suggesting strategies for the development of new generation MSAs for use in the clinic. ZMP and its less active analog dactylolide competed with paclitaxel for binding to MTs and represented a novel MSA chemotype. Unlike traditional taxoid site ligands, ZMP remained significantly more cytotoxic in cell lines with mutations in the taxoid binding site, and behaved in an unusual manner in vitro. This was later found to be due to its mechanism of binding which involved covalent modification of two amino acids in the taxoid binding site, histidine 229 as the major product and asparagine 228 as the minor product. Alkylation of both these luminal site residues was also detected in unassembled tubulin, providing the first direct evidence that the taxoid binding site exists in unassembled tubulin and suggesting that the induction of MT nucleation by MSAs may proceed through an allosteric mechanism. X-ray crystallography data confirmed the presence of this binding site in unassembled tubulin and indicated that covalent modification occurs at C9 of ZMP with the NE2 of the histidine side chain. The potent stabilization of MTs observed with ZMP occurred due to its side chain interaction with the stabilizing M-loop of β-tubulin. In unassembled tubulin the M-loop is unordered. Upon ZMP binding, it is restructured into a short, well-defined helix. It is this restructuring that leads to the potent stabilization by ZMP and most likely other MSAs, including those currently used in the clinic. This information provides a basis for structure-guided drug engineering to design and develop new generation MSAs with potent stabilizing activity. In addition, covalent binding of ZMP means that it is able to avoid drug efflux pumps and thus evade the main mechanism of resistance presented to MSAs in the clinic. It was shown by studying structure-activity relationships that there are a number of key chemical motifs in ZMP responsible for its potent activity. Simpler analog structures that retain significant stabilizing activity could be used as lead compounds for further drug development. Moreover, MSAs have clinically relevant anti-angiogenic and vascular-disrupting properties, and ZMP was also shown to potently inhibit cell migration and thus have possible benefits as a vasculature-targeting compound. It was concluded that ZMP is a potent covalently-binding MSA in both cells and in vitro. Given these promising results, further preclinical development of the compound is warranted.</p>


2021 ◽  
Vol 22 (24) ◽  
pp. 13182
Author(s):  
Eric Chekwube Aniogo ◽  
Blassan P. George ◽  
Heidi Abrahamse

Photodynamic therapy (PDT) is currently enjoying considerable attention as the subject of experimental research to treat resistant cancers. The preferential accumulation of a non-toxic photosensitizer (PS) in different cellular organelles that causes oxidative damage by combining light and molecular oxygen leads to selective cell killing. However, one major setback, common among other treatment approaches, is tumor relapse and the development of resistance causing treatment failure. PDT-mediated resistance could result from increased drug efflux and decreased localization of PS, reduced light exposure, increased DNA damage repair, and altered expression of survival genes. This review highlights the essential insights of PDT reports in which PDT resistance was observed and which identified some of the molecular effectors that facilitate the development of PDT resistance. We also discuss different perceptions of PDT and how its current limitations can be overturned to design improved cancer resistant treatments.


2021 ◽  
Author(s):  
Alison M. Kurimchak ◽  
Carlos Herrera-Montávez ◽  
Sara Montserrat ◽  
Daniela Araiza ◽  
Jianping Hu ◽  
...  

ABSTRACTPROTACs (Proteolysis-Targeting Chimeras) represent a promising new class of drugs that selectively degrade proteins of interest from cells. PROTACs targeting oncogenes are avidly being explored for cancer therapies, with several currently in clinical trials. Drug resistance represents a significant challenge in cancer therapies, and the mechanism by which cancer cells acquire resistance to PROTACs remains poorly understood. Using proteomics, we discovered acquired and intrinsic resistance to PROTACs in cancer cells can be mediated by upregulation of the drug efflux pump MDR1. PROTAC-resistant cells could be re-sensitized to PROTACs through co-administering MDR1 inhibitors. Notably, co-treatment of MDR1-overexpressing colorectal cancer cells with MEK1/2 or KRASG12C degraders and the dual ErbB receptor/MDR1 inhibitor lapatinib exhibited potent drug synergy due to simultaneous blockade of MDR1 and ErbB receptor activity. Together, our findings suggest that concurrent blockade of MDR1 will likely be required in combination with PROTACs to achieve durable protein degradation and therapeutic response in cancer.


Sign in / Sign up

Export Citation Format

Share Document