compact conformation
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 1)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Benjamin Bindereif ◽  
Heike Karbstein ◽  
Katharina Zahn ◽  
Ulrike van der Schaaf

The influence of the conformation of sugar beet pectin (SBP) on the interfacial and emulsifying properties was investigated. The colloidal properties of SBP, such as zeta potential and hydrodynamic diameter, were characterized at different pH levels. Furthermore, pendant drop tensiometry and quartz crystal microgravimetry were used to study adsorption behavior (adsorbed mass and adsorption rate) and stabilizing mechanism (layer thickness and interfacial tension). A more compact conformation resulted in a faster reduction of interfacial tension, higher adsorbed mass, and a thicker adsorption layer. In addition, emulsions were prepared at varying conditions (pH 3–5) and formulations (1–30 wt% MCT oil, 0.1–2 wt% SBP), and their droplet size distributions were measured. The smallest oil droplets could be stabilized at pH 3. However, significantly more pectin was required at pH 3 compared to pH 4 or 5 to sufficiently stabilize the oil droplets. Both phenomena were attributed to the more compact conformation of SBP at pH < pKa: On the one hand, pectins adsorbed faster and in greater quantity, forming a thicker interfacial layer. On the other hand, they covered less interfacial area per SBP molecule. Therefore, the SBP concentration must be chosen appropriately depending on the conformation.


2022 ◽  
Author(s):  
Joshua Pajak ◽  
Gaurav Arya

The bacterial FtsK motor harvests energy from ATP to translocate double-stranded DNA during cell division. Here, we probe the molecular mechanisms underlying coordinated DNA translocation in FtsK by performing long timescale simulations of its hexameric assembly and individual subunits. From these simulations we predict signaling pathways that connect the ATPase active site to DNA-gripping residues, which allows the motor to coordinate its translocation activity with its ATPase activity. Additionally, we utilize well-tempered metadynamics simulations to compute free-energy landscapes that elucidate the extended-to-compact transition involved in force generation. We show that nucleotide binding promotes a compact conformation of a motor subunit, whereas the apo subunit is flexible. Together, our results support a mechanism whereby each ATP-bound subunit of the motor conforms to the helical pitch of DNA, and ATP hydrolysis/product release causes a subunit to lose grip of DNA. By ordinally engaging and disengaging with DNA, the FtsK motor unidirectionally translocates DNA.


2021 ◽  
Author(s):  
Samapan Sikdar ◽  
Manidipa Banerjee ◽  
Satyavani Vemparala

AbstractThe importance of disulfide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulfide (SS) bond in partitioning mechanism of membrane active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state, resulting in reduced hydrophobic exposure. Owing to this, the partitioning of HAV-2B peptide is completely or partly abolished. In a way, the disulfide bond regulates the partitioning of HAV-2B peptide, such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulfide bond formation within its membrane active region.


2021 ◽  
Author(s):  
Magdalena Bejger ◽  
Paulina Fortuna ◽  
Magda Drewniak ◽  
Jacek Plewka ◽  
Wojciech Rypniewski ◽  
...  

A new miniprotein built from three helices, including one structure based on a ααβαααβ sequence pattern was developed. Its crystal structure revealed a compact conformation with a well-packed hydrophobic core...


2020 ◽  
Vol 108 ◽  
pp. 106079 ◽  
Author(s):  
Jiefen Cui ◽  
Chengying Zhao ◽  
Shaojie Zhao ◽  
Guifang Tian ◽  
Feng Wang ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Katiuska González-Arzola ◽  
Antonio Díaz-Quintana ◽  
Noelia Bernardo-García ◽  
Miguel Á. Casado-Combreras ◽  
Carlos A. Elena-Real ◽  
...  

AbstractThe alternative reading frame (ARF) protein is crucial in the cellular response to oncogenic stress, being likewise the second most frequently inactivated gene in a wide spectrum of human cancers. ARF is usually sequestered in the nucleolus by the well-known oncogenic nucleophosmin (NPM) protein and is liberated in response to cell damage to exhibit its tumor-suppressor ability. However, the mechanism underlying ARF activation is unknown. Here we show that mitochondria-to-nucleus translocation of cytochrome c upon DNA damage leads to the break-off of the NPM-ARF ensemble and subsequent release of ARF from the nucleoli. Our structural and subcellular data support a molecular model in which the hemeprotein triggers the extended-to-compact conformation of NPM and competes with ARF for binding to NPM.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gareth W. Hughes ◽  
Caroline Ridley ◽  
Richard Collins ◽  
Alan Roseman ◽  
Robert Ford ◽  
...  

AbstractThe polymeric mucin MUC5B provides the structural and functional framework of respiratory mucus, conferring both viscoelastic and antimicrobial properties onto this vital protective barrier. Whilst it is established that MUC5B forms disulfide-linked linear polymers, how this relates to their packaging in secretory granules, and their molecular form in mucus remain to be fully elucidated. Moreover, the role of the central heavily O-glycosylated mucin domains in MUC5B conformation is incompletely described. Here we have completed a detailed structural analysis on native MUC5B polymers purified from saliva and subsequently investigated how MUC5B conformation is affected by changes in calcium concentration and pH, factors important for mucin intragranular packaging and post-secretory expansion. The results identify that MUC5B has a beaded structure repeating along the polymer axis and suggest that these repeating motifs arise from distinct glycosylation patterns. Moreover, we demonstrate that the conformation of these highly entangled linear polymers is sensitive to calcium concentration and changes in pH. In the presence of calcium (Ca2+, 10 mM) at pH 5.0, MUC5B adopted a compact conformation which was lost either upon removal of calcium with EGTA, or by increasing the pH to 7.4. These results suggest a pathway of mucin collapse to enable intracellular packaging and mechanisms driving mucin expansion following secretion. They also point to the importance of the tight control of calcium and pH during different stages of mucin biosynthesis and secretion, and in the generation of correct mucus barrier properties.


2019 ◽  
Vol 47 (19) ◽  
pp. 10426-10438
Author(s):  
Jianming Han ◽  
Tingting Li ◽  
Yanjing Li ◽  
Muchun Li ◽  
Xiaoman Wang ◽  
...  

Abstract The Mixed Lineage Leukemia protein 1 (MLL1) plays an essential role in the maintenance of the histone H3 lysine 4 (H3K4) methylation status for gene expression during differentiation and development. The methyltransferase activity of MLL1 is regulated by three conserved core subunits, WDR5, RBBP5 and ASH2L. Here, we determined the structure of human RBBP5 and demonstrated its role in the assembly and regulation of the MLL1 complex. We identified an internal interaction between the WD40 propeller and the C-terminal distal region in RBBP5, which assisted the maintenance of the compact conformation of the MLL1 complex. We also discovered a vertebrate-specific motif in the C-terminal distal region of RBBP5 that contributed to nucleosome recognition and methylation of nucleosomes by the MLL1 complex. Our results provide new insights into functional conservation and evolutionary plasticity of the scaffold protein RBBP5 in the regulation of KMT2-family methyltransferase complexes.


2019 ◽  
Vol 476 (17) ◽  
pp. 2449-2462
Author(s):  
Jan Ludwiczak ◽  
Ewa Szczęsna ◽  
Antônio Marinho da Silva Neto ◽  
Piotr Cieplak ◽  
Andrzej A. Kasprzak ◽  
...  

Abstract Minus-end directed, non-processive kinesin-14 Ncd is a dimeric protein with C-terminally located motor domains (heads). Generation of the power-stroke by Ncd consists of a lever-like rotation of a long superhelical ‘stalk’ segment while one of the kinesin's heads is bound to the microtubule. The last ∼30 amino acids of Ncd head play a crucial but still poorly understood role in this process. Here, we used accelerated molecular dynamics simulations to explore the conformational dynamics of several systems built upon two crystal structures of Ncd, the asymmetrical T436S mutant in pre-stroke/post-stroke conformations of two partner subunits and the symmetrical wild-type protein in pre-stroke conformation of both subunits. The results revealed a new conformational state forming following the inward motion of the subunits and stabilized with several hydrogen bonds to residues located on the border or within the C-terminal linker, i.e. a modeled extension of the C-terminus by residues 675–683. Forming of this new, compact Ncd conformation critically depends on the length of the C-terminus extending to at least residue 681. Moreover, the associative motion leading to the compact conformation is accompanied by a partial lateral rotation of the stalk. We propose that the stable compact conformation of Ncd may represent an initial state of the working stroke.


2018 ◽  
Vol 475 (1) ◽  
pp. 341-354 ◽  
Author(s):  
Paola Cavaliere ◽  
Sébastien Brier ◽  
Petr Filipenko ◽  
Christina Sizun ◽  
Bertrand Raynal ◽  
...  

In bacteria, one primary and multiple alternative sigma (σ) factors associate with the RNA polymerase core enzyme (E) to form holoenzymes (Eσ) with different promoter recognition specificities. The alternative σ factor RpoS/σS is produced in stationary phase and under stress conditions and reprograms global gene expression to promote bacterial survival. To date, the three-dimensional structure of a full-length free σ factor remains elusive. The current model suggests that extensive interdomain contacts in a free σ factor result in a compact conformation that masks the DNA-binding determinants of σ, explaining why a free σ factor does not bind double-stranded promoter DNA efficiently. Here, we explored the solution conformation of σS using amide hydrogen/deuterium exchange coupled with mass spectrometry, NMR, analytical ultracentrifugation and molecular dynamics. Our data strongly argue against a compact conformation of free σS. Instead, we show that σS adopts an open conformation in solution in which the folded σ2 and σ4 domains are interspersed by domains with a high degree of disorder. These findings suggest that E binding induces major changes in both the folding and domain arrangement of σS and provide insights into the possible mechanisms of regulation of σS activity by its chaperone Crl.


Sign in / Sign up

Export Citation Format

Share Document