platypus genome
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

Nature ◽  
2021 ◽  
Author(s):  
Yang Zhou ◽  
Linda Shearwin-Whyatt ◽  
Jing Li ◽  
Zhenzhen Song ◽  
Takashi Hayakawa ◽  
...  

AbstractEgg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.


2016 ◽  
Vol 38 (1) ◽  
pp. 80 ◽  
Author(s):  
Oselyne T. W. Ong ◽  
Lauren J. Young ◽  
Julie M. Old

The complement system is a major mediator of the vertebrate immune system, which functions in both innate and specific immune responses. It comprises more than 30 proteins working to remove foreign cells by way of anaphylatoxins, opsonins or the membrane attack complex. Over the last few years, whole genome sequences of non-eutherian mammals (marsupials and a monotreme), the gray short-tailed opossum (Monodelphis domestica), tammar wallaby (Macropus eugenii), Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus) and platypus (Ornithorhynchus anatinus), have become publicly available. Using these sequences, we have identified an array of complement components in non-eutherians using online search tools and algorithms. Of 57 complement and complement-related genes investigated, we identified 46 in the gray short-tailed opossum genome, 27 in the tammar wallaby genome, 44 in the Tasmanian devil genome, 47 in the koala genome and 40 in the platypus genome. The results of this study confirm the presence of key complement components in the immune repertoire of non-eutherian mammals and provide a platform for future studies on immune protection in young marsupials.


2012 ◽  
Vol 93 (6) ◽  
pp. 1362-1366 ◽  
Author(s):  
Jie Cui ◽  
Edward C. Holmes

Papillomaviruses (PVs) infect a wide range of vertebrates and have diversified into multiple genetic types, some of which have serious consequences for human health. Although PVs have to date only been characterized as exogenous viral forms, here we report the observation of an endogenous viral element (EPVLoa) in the genome of the platypus (Ornithorhynchus anatinus) that is related to PVs. Further data mining for endogenous PV-like elements is therefore warranted.


2009 ◽  
Vol 61 (8) ◽  
pp. 565-579 ◽  
Author(s):  
Emily S. W. Wong ◽  
Claire E. Sanderson ◽  
Janine E. Deakin ◽  
Camilla M. Whittington ◽  
Anthony T. Papenfuss ◽  
...  

2009 ◽  
Vol 57 (4) ◽  
pp. 199 ◽  
Author(s):  
Camilla M. Whittington ◽  
Katherine Belov

The venom of the platypus (Ornithorhynchus anatinus) has been poorly studied to date. The recent publication of the platypus genome heralds a new era for mammalian venom research and is a useful starting tool for functional studies of venom components. We report here the patterns of tissue expression of two venom genes, OvNGF and OvCNP, in order to provide some insight into the functions of the proteins they produce and to pave the way for further functional and pharmacological studies, which may lead to the development of novel therapeutic agents.


2009 ◽  
Vol 21 (8) ◽  
pp. 935 ◽  
Author(s):  
Marilyn B. Renfree ◽  
Anthony T. Papenfuss ◽  
Geoff Shaw ◽  
Andrew J. Pask

Genomic imprinting is widespread in eutherian and marsupial mammals. Although there have been many hypotheses to explain why genomic imprinting evolved in mammals, few have examined how it arose. The host defence hypothesis suggests that imprinting evolved from existing mechanisms within the cell that act to silence foreign DNA elements that insert into the genome. However, the changes to the mammalian genome that accompanied the evolution of imprinting have been hard to define due to the absence of large-scale genomic resources from all extant classes. The recent release of the platypus genome sequence has provided the first opportunity to make comparisons between prototherian (monotreme, which show no signs of imprinting) and therian (marsupial and eutherian, which have imprinting) mammals. We compared the distribution of repeat elements known to attract epigenetic silencing across the genome from monotremes and therian mammals, particularly focusing on the orthologous imprinted regions. Our analyses show that the platypus has significantly fewer repeats of certain classes in the regions of the genome that have become imprinted in therian mammals. The accumulation of repeats, especially long-terminal repeats and DNA elements, in therian imprinted genes and gene clusters therefore appears to be coincident with, and may have been a potential driving force in, the development of mammalian genomic imprinting. Comparative platypus genome analyses of orthologous imprinted regions have provided strong support for the host defence hypothesis to explain the origin of imprinting.


2009 ◽  
Vol 21 (8) ◽  
pp. 943 ◽  
Author(s):  
Paul D. Waters ◽  
Jennifer A. Marshall Graves

In vertebrates, a highly conserved pathway of genetic events controls male and female development, to the extent that many genes involved in human sex determination are also involved in fish sex determination. Surprisingly, the master switch to this pathway, which intuitively could be considered the most critical step, is inconsistent between vertebrate taxa. Interspersed in the vertebrate tree there are species that determine sex by environmental cues such as the temperature at which eggs are incubated, and then there are genetic sex-determination systems, with male heterogametic species (XY systems) and female heterogametic species (ZW systems), some of which have heteromorphic, and others homomorphic, sex chromosomes. This plasticity of sex-determining switches in vertebrates has made tracking the events of sex chromosome evolution in amniotes a daunting task, but comparative gene mapping is beginning to reveal some striking similarities across even distant taxa. In particular, the recent completion of the platypus genome sequence has completely changed our understanding of when the therian mammal X and Y chromosomes first arose (they are up to 150 million years younger than previously thought) and has also revealed the unexpected insight that sex determination of the amniote ancestor might have been controlled by a bird-like ZW system.


Sign in / Sign up

Export Citation Format

Share Document