flow cytometric measurement
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 13)

H-INDEX

34
(FIVE YEARS 1)

2021 ◽  
pp. 1-17
Author(s):  
Stefan Bernhard ◽  
Stefan Hug ◽  
Alexander Elias Paul Stratmann ◽  
Maike Erber ◽  
Laura Vidoni ◽  
...  

A sufficient response of neutrophil granulocytes stimulated by interleukin (IL)-8 is vital during systemic inflammation, for example, in sepsis or severe trauma. Moreover, IL-8 is clinically used as biomarker of inflammatory processes. However, the effects of IL-8 on cellular key regulators of neutrophil properties such as the intracellular pH (pH<sub>i</sub>) in dependence of ion transport proteins and during inflammation remain to be elucidated. Therefore, we investigated in detail the fundamental changes in pH<sub>i</sub>, cellular shape, and chemotactic activity elicited by IL-8. Using flow cytometric methods, we determined that the IL-8-induced cellular activity was largely dependent on specific ion channels and transporters, such as the sodium-proton exchanger 1 (NHE1) and non-NHE1-dependent sodium flux. Exposing neutrophils in vitro to a proinflammatory micromilieu with N-formyl-Met-Leu-Phe, LPS, or IL-8 resulted in a diminished response regarding the increase in cellular size and pH. The detailed kinetics of the reduced reactivity of the neutrophil granulocytes could be illustrated in a near-real-time flow cytometric measurement. Last, the LPS-mediated impairment of the IL-8-induced response in neutrophils was confirmed in a translational, animal-free human whole blood model. Overall, we provide novel mechanistic insights for the interaction of IL-8 with neutrophil granulocytes and report in detail about its alteration during systemic inflammation.


2020 ◽  
Author(s):  
Michael Bitar ◽  
Marcus Boettcher ◽  
Andreas Boldt ◽  
Fabian Hauck ◽  
Ulrike Köhl ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Tayebeh Afsharirad ◽  
Raheleh Tahmasvand ◽  
Mohsen Amini ◽  
Bahram Daraei ◽  
Mona Salimi

Abstract Background Although two novel synthesized compounds with tri-aryl structures; 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (A) and 3,5-bis-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity. Methods Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay. Annexin V/PI method, intracellular ROS determination and mitochondrial membrane potential assay were applied to elucidate the mechanism of action of the cell death. Results MTT assay revealed a concentration- and time-dependent cardiotoxicity. Findings of apoptosis by double staining with annexin V and propidium iodide divulged no cell death including apoptosis and necrosis at the concentration that were effective to inhibit cancer cells proliferation (10 μM) at 24 and 48 h. Furthermore, flow cytometric measurement of membrane potential and ROS determination using DCFH-DA verified the safe concentration of the compounds against H9c2 cells with no cardiotoxic effect. However, the higher concentration of the compounds could induce cell death through ROS-mediated mitochondrial dysfunction. Conclusions Altogether, the results represented two novel chemical molecules possessing anti-breast cancer activity with minimum cardiac side effect.


2020 ◽  
Author(s):  
Tayebeh Afsharirad ◽  
Raheleh Tahmasvand ◽  
Mohsen Amini ◽  
Bahram Daraei ◽  
Mona Salimi

Abstract Background: Although two novel synthesized compounds with tri-aryl structures; 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (A) and 3,5-bis-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity. Methods: Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay. Annexin V/PI method, intracellular ROS determination and mitochondrial membrane potential assay were applied to elucidate the mechanism of action of the cell death. Results: MTT assay revealed a concentration- and time-dependent cardiotoxicity. Findings of apoptosis by double staining with annexin V and propidium iodide divulged no cell death including apoptosis and necrosis at the concentration that were effective to inhibit cancer cells proliferation (10 µM) at 24 and 48 hours. Furthermore, flow cytometric measurement of membrane potential and ROS determination using DCFH-DA verified the safe concentration of the compounds against H9c2 cells with no cardiotoxic effect. However, the higher concentration of the compounds could induce cell death through ROS-mediated mitochondrial dysfunction. Conclusions: Altogether, the results represented two novel chemical molecules possessing anti-breast cancer activity with minimum cardiac side effect.


2020 ◽  
Author(s):  
Tayebeh Afsharirad ◽  
Raheleh Tahmasvand ◽  
Mohsen Amini ◽  
Bahram Daraei ◽  
Mona Salimi

Abstract Background: Although two novel synthesized compounds with tri-aryl structures; 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (A) and 3,5-bis-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity. Methods: Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay. Annexin V/PI method, intracellular ROS determination and mitochondrial membrane potential assay were applied to elucidate the mechanism of action of the cell death. Results: MTT assay revealed a concentration- and time-dependent cardiotoxicity. Findings of apoptosis by double staining with annexin V and propidium iodide divulged no cell death including apoptosis and necrosis at the concentration that were effective to inhibit cancer cells proliferation (10 µM) at 24 and 48 hours. Furthermore, flow cytometric measurement of membrane potential and ROS determination using DCFH-DA verified the safe concentration of the compounds against H9c2 cells with no cardiotoxic effect. However, the higher concentration of the compounds could induce cell death through ROS-mediated mitochondrial dysfunction. Conclusions: Altogether, the results represented two novel chemical molecules possessing anti-breast cancer activity with minimum cardiac side effect.


2020 ◽  
Vol 59 (1) ◽  
Author(s):  
Kali R. Iyer ◽  
Nicole Robbins ◽  
Leah E. Cowen

2020 ◽  
Author(s):  
Tayebeh Afsharirad ◽  
Raheleh Tahmasvand ◽  
Mohsen Amini ◽  
Bahram Daraei ◽  
Mona Salimi

Abstract Background: Although two novel synthesized compounds with tri-aryl structures (A and B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity. Methods: Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay. Annexin V/PI method, intracellular ROS determination and mitochondrial membrane potential assay were applied to elucidate the mechanism of action of the cell death. Results: MTT assay revealed a concentration- and time-dependent cardiotoxicity. Findings of apoptosis by double staining with annexin V and propidium iodide divulged no cell death including apoptosis and necrosis at the concentration that were effective to inhibit cancer cells proliferation (10 µM) at 24 and 48 hours. Furthermore, flow cytometric measurement of membrane potential and ROS determination using DCFH-DA verified the safe concentration of the compounds against H9c2 cells with no cardiotoxic effect. However, the higher concentration of the compounds could induce cell death through ROS-mediated mitochondrial dysfunction. Conclusions: Altogether, the results represented two novel chemical molecules possessing anti-breast cancer activity with minimum cardiac side effect.


2020 ◽  
Author(s):  
Valeria Jimenez ◽  
John A. Burns ◽  
Florence Le Gall ◽  
Fabrice Not ◽  
Daniel Vaulot

ABSTRACTIn the Arctic Ocean, the small green alga Micromonas polaris dominates pico-phytoplankton during the summer months. It has been previously hypothesized to be phago-mixotrophic (capable of bacteria ingestion) based on laboratory and field experiments. Prey uptake was analysed in several M. polaris strains isolated from different regions and depths of the Arctic Ocean. Using both fluorescent beads and fluorescently labelled bacteria as prey, we found no evidence of phago-mixotrophy in any M. polaris strain by flow cytometric measurement of prey ingestion. In addition, in silico predictions reveal that members of the genus Micromonas lack a genetic signature of phagocytotic capacity.


Sign in / Sign up

Export Citation Format

Share Document