premature aging syndromes
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Olivia Cypris ◽  
Monika Eipel ◽  
Julia Franzen ◽  
Corinna Rösseler ◽  
Vithurithra Tharmapalan ◽  
...  

Abstract Background Dyskeratosis congenita (DKC) and idiopathic aplastic anemia (AA) are bone marrow failure syndromes that share characteristics of premature aging with severe telomere attrition. Aging is also reflected by DNA methylation changes, which can be utilized to predict donor age. There is evidence that such epigenetic age predictions are accelerated in premature aging syndromes, but it is yet unclear how this is related to telomere length. DNA methylation analysis may support diagnosis of DKC and AA, which still remains a challenge for these rare diseases. Results In this study, we analyzed blood samples of 70 AA and 18 DKC patients to demonstrate that their epigenetic age predictions are overall increased, albeit not directly correlated with telomere length. Aberrant DNA methylation was observed in the gene PRDM8 in DKC and AA as well as in other diseases with premature aging phenotype, such as Down syndrome and Hutchinson-Gilford-Progeria syndrome. Aberrant DNA methylation patterns were particularly found within subsets of cell populations in DKC and AA samples as measured with barcoded bisulfite amplicon sequencing (BBA-seq). To gain insight into the functional relevance of PRDM8, we used CRISPR/Cas9 technology to generate induced pluripotent stem cells (iPSCs) with heterozygous and homozygous knockout. Loss of PRDM8 impaired hematopoietic and neuronal differentiation of iPSCs, even in the heterozygous knockout clone, but it did not impact on epigenetic age. Conclusion Taken together, our results demonstrate that epigenetic aging is accelerated in DKC and AA, independent from telomere attrition. Furthermore, aberrant DNA methylation in PRDM8 provides another biomarker for bone marrow failure syndromes and modulation of this gene in cellular subsets may be related to the hematopoietic and neuronal phenotypes observed in premature aging syndromes. Graphical abstract


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1340 ◽  
Author(s):  
Michael Blank

Nuclear lamins (NLs) are essential components of the animal cell nucleus involved in the regulation of a plethora of molecular and cellular processes. These include the nuclear envelope assembly and stability, mechanotransduction and chromatin organization, transcription, DNA replication, damage repair, and genomic integrity maintenance. Mutations in NLs can lead to the development of a wide range of distinct disease phenotypes, laminopathies, consisting of cardiac, neuromuscular, metabolic and premature aging syndromes. In addition, alterations in the expression of nuclear lamins were associated with different types of neoplastic diseases. Despite the importance and critical roles that NLs play in the diverse cellular activities, we only recently started to uncover the complexity of regulatory mechanisms governing their expression, localization and functions. This integrative review summarizes and discusses the recent findings on the emerging roles of ubiquitin and ubiquitin-like modifiers (ULMs) in the regulation of NLs, highlighting the intriguing molecular associations and cross-talks occurring between NLs and these regulatory molecules under physiological conditions and in the disease states.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Maude Grelet ◽  
Véronique Blanck ◽  
Sabine Sigaudy ◽  
Nicole Philip ◽  
Fabienne Giuliano ◽  
...  

Abstract Background Segmental progeroid syndromes are a heterogeneous group of rare and often severe genetic disorders that have been studied since the twentieth century. These progeroid syndromes are defined as segmental because only some of the features observed during natural aging are accelerated. Methods Since 2015, the Molecular Genetics Laboratory in Marseille La Timone Hospital proposes molecular diagnosis of premature aging syndromes including laminopathies and related disorders upon NGS sequencing of a panel of 82 genes involved in these syndromes. We analyzed the results obtained in 4 years on 66 patients issued from France and abroad. Results Globally, pathogenic or likely pathogenic variants (ACMG class 5 or 4) were identified in about 1/4 of the cases; among these, 9 pathogenic variants were novel. On the other hand, the diagnostic yield of our panel was over 60% when the patients were addressed upon a nosologically specific clinical suspicion, excepted for connective tissue disorders, for which clinical diagnosis may be more challenging. Prenatal testing was proposed to 3 families. We additionally detected 16 variants of uncertain significance and reclassified 3 of them as benign upon segregation analysis in first degree relatives. Conclusions High throughput sequencing using the Laminopathies/ Premature Aging disorders panel allowed molecular diagnosis of rare disorders associated with premature aging features and genetic counseling for families, representing an interesting first-level analysis before whole genome sequencing may be proposed, as a future second step, by the National high throughput sequencing platforms (“Medicine France Genomics 2025” Plan), in families without molecular diagnosis.


2019 ◽  
Vol 96 (2) ◽  
pp. 58-65
Author(s):  
Mattheus Xing Rong Foo ◽  
Peh Fern Ong ◽  
Oliver Dreesen

Author(s):  
John C. Lucchesi

Epigenetic modifications correlated with aging and oncogenesis are changes in the pattern of DNA methylation and of histone modifications, and changes in the level of histone variants (H3.3, macroH2A, H2A.Z) and gene mutations. The sirtuins are a set of highly conserved protein deacetylases of particular significance to the aging process. Many cancer types are found to carry mutations in chromatin-modifying genes such as those encoding methyl or acetyl transferases, affecting the histone modifications of promoters and enhancers. The aging process and oncogenesis present a number of changes in the nuclear architecture. Mutations in the lamina-coding genes lead to premature aging syndromes. Mutations in remodeling complexes are found in different cancers. Modifications that affect the architectural protein binding sites at topologically associating domain (TAD) borders can cause the merging of neighboring TADs. The levels of short non-coding RNAs (sncRNAs) are altered in model organisms and are associated with cancer. Changes in the position of chromosome territories often occur in tumor cells. Nevertheless, cellular senescence, due mostly to the absence of telomerase, represents a mechanism of tumor suppression.


Aging Cell ◽  
2018 ◽  
Vol 17 (4) ◽  
pp. e12766 ◽  
Author(s):  
Diane Frankel ◽  
Valérie Delecourt ◽  
Karim Harhouri ◽  
Annachiara De Sandre-Giovannoli ◽  
Nicolas Lévy ◽  
...  

2016 ◽  
pp. 1529-1547
Author(s):  
Adele Chedraoui ◽  
Abdul Ghani Kibbi ◽  
Mazen Kurban

2016 ◽  
Vol 32 (5) ◽  
pp. 650-658 ◽  
Author(s):  
Yuichi Ikeda ◽  
Hidetoshi Kumagai ◽  
Yoshihiro Motozawa ◽  
Jun-ichi Suzuki ◽  
Hiroshi Akazawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document