pure transition
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 13 (2) ◽  
pp. 571-578
Author(s):  
T. Vaz ◽  
A. V. Salker

Pure transition metal vanadates NiV2O6 and CuV2O6 were successfully prepared via co-precipitation technique as low as at 600 °C. The crystal structure and their phase formation were confirmed by X-ray powdered diffraction. Both the compounds were identified to have a single-phase triclinic structure. The bonding characteristics were studied by FTIR spectroscopy. The temperature dependence of electrical resistivity of these vanadates shows a typical semiconducting nature of NiV2O6 and CuV2O6, consistent with their electronic band structures. The calculated band gap energy values of NiV2O6 and CuV2O6 were found to be 2.42 and 2.0 eV respectively, employing a DRS UV-Visible spectrophotometer. Magnetic susceptibility measurements and calculated Magnetic moments confirm their paramagnetic nature. The photocatalytic efficiency was investigated by photo-degradation of methylene blue (MB) solutions employing solar light and found to be promising photocatalysts.


Author(s):  
Iliana N. Apostolova ◽  
Angel T. Apostolov ◽  
Steffen Trimper ◽  
Julia M. Wesselinowa

Atoms ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 102
Author(s):  
Peter Uylings ◽  
Ton Raassen

Orthogonal operators can successfully be used to calculate eigenvalues and eigenvector compositions in complex spectra. Orthogonality ensures least correlation between the operators and thereby more stability in the fit, even for small interactions. The resulting eigenvectors are used to transform the pure transition matrix into realistic intermediate coupling transition probabilities. Calculated transition probabilities for close lying levels illustrate the power of the complete orthogonal operator approach.


Author(s):  
Peter Uylings ◽  
Ton Raassen

Orthogonal operators can successfully be used to calculate eigenvalues and eigenvector compositions in complex spectra. Orthogonality ensures least correlation between the operators and thereby more stability in the fit, even for small interactions. The resulting eigenvectors are used to transform the pure transition matrix into realistic intermediate coupling transition probabilities. Calculated transition probabilities for close lying levels illustrate the power of the complete orthogonal operator approach.


2013 ◽  
Vol 1494 ◽  
pp. 245-251
Author(s):  
A.V. Adedeji ◽  
S.D. Worsley ◽  
T.L. Baker ◽  
R. Mundle ◽  
A.K. Pradhan ◽  
...  

ABSTRACTThin films of Transition Metal Oxides (TMOs) were deposited by reactive sputtering of pure transition metal targets in Argon-Oxygen gas mixture at elevated substrate temperature for efficient energy consumption. The atomic composition and thickness of the TMO films was determined by Rutherford Backscattering Spectroscopy (RBS). Optical transmittance and reflectance spectrum of the films on quartz substrate was measured with thin film measuring system at room temperature and slightly elevated temperature. The surface morphology and structure of the TMO films was determined with Atomic Force Microscope (AFM).


Open Physics ◽  
2011 ◽  
Vol 9 (2) ◽  
Author(s):  
Seyed Mahboobi ◽  
Ali Meghdari ◽  
Nader Jalili ◽  
Farshid Amiri

AbstractMolecular dynamics simulations are carried out to investigate the manipulation of metallic clusters on stepped surfaces. Five surface forms are considered in the simulations. The system parts are made of pure transition metals and Sutton-Chen many-body potential is used as interatomic potential. The conditions which are subjected to change in the tests include: materials used for particles and substrate, and surface step conditions. In addition to qualitative observations, two criteria which represent the particle deformation and substrate abrasion are utilized as evaluation tools and are computed for each case. Simulation results show the effect of the aforementioned working conditions on the particle behavior as well as changes in the pushing forces. Obtaining this sort of knowledge is highly beneficial for further experiments in order to be able to plan the conditions and routines which guarantee better success in the manipulation process.


1990 ◽  
Vol 42 (16) ◽  
pp. 10319-10321 ◽  
Author(s):  
A. Mokrani ◽  
C. Demangeat ◽  
H. Dreyssé

Sign in / Sign up

Export Citation Format

Share Document