Molecular dynamics simulation of manipulation of metallic nanoclusters on stepped surfaces

Open Physics ◽  
2011 ◽  
Vol 9 (2) ◽  
Author(s):  
Seyed Mahboobi ◽  
Ali Meghdari ◽  
Nader Jalili ◽  
Farshid Amiri

AbstractMolecular dynamics simulations are carried out to investigate the manipulation of metallic clusters on stepped surfaces. Five surface forms are considered in the simulations. The system parts are made of pure transition metals and Sutton-Chen many-body potential is used as interatomic potential. The conditions which are subjected to change in the tests include: materials used for particles and substrate, and surface step conditions. In addition to qualitative observations, two criteria which represent the particle deformation and substrate abrasion are utilized as evaluation tools and are computed for each case. Simulation results show the effect of the aforementioned working conditions on the particle behavior as well as changes in the pushing forces. Obtaining this sort of knowledge is highly beneficial for further experiments in order to be able to plan the conditions and routines which guarantee better success in the manipulation process.

2016 ◽  
Vol 258 ◽  
pp. 277-280 ◽  
Author(s):  
Mohamed Mahmud Aish ◽  
Mikhail D. Starostenkov

A many-body interatomic potential for metallic nanowires within the second-moment approximation of the tight-binding model (the Cleri-Rosato potential) was employed to carry out three dimensional molecular dynamics simulations. Molecular dynamics simulation results for metallic nanowires at various temperature are presented. The stress–time and stress length curves for nanowires are simulated. The breaking and yield stress of nanowires are dependent on the Volume and temperature. The necking, Plastic deformation, slipping domain, twins, clusters, microspores and break-up phenomena of nanowire are demonstrated. Stress decreases with increasing nanowire volume and temperature. The final breaking position occurs at the central part of the nanowire when it is short, as the nanowire length increases the breaking position gradually shifts to the ends.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


2001 ◽  
Vol 12 (06) ◽  
pp. 865-870 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
OSMAN BARIŞ MALCIOĞLU

The effect of chirality on the structural stability of single-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanotube in chiral structure is more stable under heat treatment relative to zigzag and armchair models. The diameter of the tubes is slightly enlarged under heat treatment.


2011 ◽  
Vol 403-408 ◽  
pp. 1173-1177
Author(s):  
Jamal Davoodi ◽  
Mohammad Javad Moradi

The aim of this research was to calculate Yong modulus, Bulk modulus and the elastic constants of Rh-20at%Pd (atom percent) nanowire. The molecular dynamics simulation technique was used to calculate the mechanical properties at constant temperature, constant pressure ensemble. The cohesive energy of the model nanowire systems was calculated by Quantum Sutton-Chen many body potential. The temperature and the pressure of the system were controlled by Nose-Hoover thermostat and Berendsen barostat, respectivly. In addition effects of the diameter of nanowire on the mechanical properties were studied. The obtained results show that, when the diameter of Rh-Pd nanowire increase, elastic constants, bulk modulus and Young modulus all increase, and when the diameter reaches about 5.5 nm, the properties began to level off and remain constant.


2010 ◽  
Vol 25 (9) ◽  
pp. 1679-1688 ◽  
Author(s):  
S.Z. Zhao ◽  
J.H. Li ◽  
B.X. Liu

An n-body potential is first constructed for the Zr–Al system and proven to be realistic by reproducing a number of important properties of the system. Applying the constructed potential, molecular dynamics simulations, chemical short-range order (CSRO) calculation, and Honeycutt and Anderson (HA) pair analysis are carried out to study the Zr–Al metallic glasses. It is found that for the binary Zr–Al system, metallic glasses are energetically favored to be formed within composition range of 35–75 at.% Al. The calculation shows that the CSRO parameter is negative and could be up to −0.17, remarkably indicating that there exists a chemical short-range order in the Zr–Al metallic glasses. The HA pair analysis also reveals that there are diverse short-range packing units in the Zr–Al metallic glasses, in which icosahedra and icosahedra/face-centered cubic (fcc)-defect structures are predominant.


1989 ◽  
Vol 157 ◽  
Author(s):  
M. Kitabatake ◽  
P. Fons ◽  
J. E. Greene

ABSTRACTMolecular dynamics simulations, utilizing the Tersoff many-body potential, were used to investigate the effects of 10 eV Si atom bombardment of a (001)2×1 terminated Si lattice. The irradiation events were initiated at an array of points in the primitive surface unit cell. Each event was followed to determine kinetic energy redistribution in the lattice as a function of time, projectile and lattice atom trajectories, and the nature, number, and depth of residual defects. Dimer breaking, epitaxial growth, position exchange, and the formation of residual hexagonal and split interstitials were observed. There were no residual vacancies. Impact points leading to each of the above results clustered in distinctly different regions of the surface unit cell. Bulk interstitials were annealed out over time scales corresponding to monolayer deposition during Si MBE.


1990 ◽  
Vol 206 ◽  
Author(s):  
R.C. Mowrey ◽  
D.W. Brenner ◽  
B.I. Dunlap ◽  
J.W. Mintmire ◽  
C.T. White

ABSTRACTWe have performed molecular dynamics simulations using a recently developed empirical many-body potential energy function to study the collision of the C60 isomer buckmin-sterfullerene with a hydrogen-terminated diamond surface. The simulations indicate that the cluster can react with the surface and has a larger probability of gaining atoms from the surface than of losing atoms to the surface. We have investigated the dependence of the reaction probability on the initial center-of-mass translational velocity of the cluster. The structures and energy distributions of the product clusters have been determined. Both inelastically and reactively scattered clusters have large amounts of internal energy which suggests that gas-phase dissociation is likely.


2002 ◽  
Vol 13 (06) ◽  
pp. 759-769 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
LYNDA AMIROUCHE ◽  
LEILA ROUAIGUIA

We have simulated the gold deposition on arsenic and gallium terminated GaAs(001) surfaces at low and room temperatures. It has been found that gallium terminated surface is relatively less stable in comparison to the arsenic terminated surface. On the other hand, a single gold adatom on the surface has different characteristics than full coverage gold atoms on the surface; a single gold atom diffuses into the surface at room temperature. Simulations have been performed by considering classical molecular-dynamics technique using an empirical many-body potential energy function comprising two- and three-body atomic interactions.


2013 ◽  
Vol 336 ◽  
pp. 47-55
Author(s):  
Jamal Davoodi ◽  
Samaneh Khoshkhatti

In this research, the thermal conductivity of aluminum (Al) in macro scale was investigated by the molecular dynamics simulation technique. We used FORTRAN programming in the simulations and used a fixed number of atoms, N, confined to a fixed pressure, P, and maintained at a constant preset temperature, T, i.e. the NPT ensemble. The Sutton-Chen many-body potential was used to calculate energy and force. The temperature and pressure of the system were controlled by Nosé-Hoover thermostat and Berendsen barostat respectively. We could solve the equations of motion using the Velocity Verlet algorithm. We calculated the thermal conductivity of Al in the macro scale using the Green-Kubo method. Moreover, we have studied the effect of increasing temperature on the value of the thermal conductivity of Al. The obtained results showed that the computed thermal conductivities are in good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document