doppler flux
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 2)

H-INDEX

17
(FIVE YEARS 0)

2019 ◽  
Vol 316 (3) ◽  
pp. H516-H521
Author(s):  
James A. Lang ◽  
Alex C. Krajek

Angiotensin II (ANG II) is locally produced in human skin and contributes to the reflex vasoconstriction (VC) response in aged but not young skin. We hypothesized that the exogenous ANG II-mediated VC response would be greater in older adults and would be affected by inhibition of adrenoreceptor or ANG II type II receptor (AT2R) pathways. Three microdialysis (MD) fibers were placed in the forearm skin of 11 young (26 ± 3 yr) and 11 older (68 ± 4 yr) individuals for perfusion of 1) Ringer solution (control), 2) adrenoreceptor blockade with yohimbine + propranolol, and 3) AT2R inhibition with PD-123319. ANG II was then added to the perfusates at eight graded dose concentrations ranging from 10−10 to 10−3 M. Laser Doppler flux was measured at each MD site, and cutaneous vascular conductance (CVC) was calculated as CVC =  laser Doppler flux/mean arterial pressure and normalized to baseline CVC values collected before ANG II perfusion (%ΔCVCbaseline). At the control site, older adults (−34 ± 4%ΔCVCbaseline) exhibited a greater peak VC compared with young adults (−22 ± 2%ΔCVCbaseline, P < 0.05), which was attenuated with adrenoreceptor blockade. Young skin exhibited a vasodilation in response to lower ANG II doses that was inhibited with AT2R inhibition. AT2R inhibition also increased the VC response to higher ANG II doses such that young skin responded similarly to older skin. These results indicate that ANG II has a greater VC influence in older than young individuals. Furthermore, ANG II may be affecting multiple targets, including adrenergic and AT2R pathways. NEW & NOTEWORTHY Intradermal perfusion of successive doses of angiotensin II (ANG II) revealed a role for ANG II type II receptors and dose-dependent, ANG II-mediated vasodilation in young but not older adults. In contrast, older adults exhibited greater vasoconstriction for a given dose of ANG II. The increased vasoconstriction in older adults was subsequently blunted with adrenoreceptor blockade, which indicates an interaction between ANG II and adrenergic signaling pathways in the cutaneous microcirculation.


2016 ◽  
Vol 121 (3) ◽  
pp. 716-723 ◽  
Author(s):  
Vienna E. Brunt ◽  
Taylor M. Eymann ◽  
Michael A. Francisco ◽  
Matthew J. Howard ◽  
Christopher T. Minson

Passive heat therapy (repeated hot tub or sauna use) reduces cardiovascular risk, but its effects on the mechanisms underlying improvements in microvascular function have yet to be studied. We investigated the effects of heat therapy on microvascular function and whether improvements were related to changes in nitric oxide (NO) bioavailability using cutaneous microdialysis. Eighteen young, sedentary, otherwise healthy subjects participated in 8 wk of heat therapy (hot water immersion to maintain rectal temperature ≥38.5°C for 60 min/session; n = 9) or thermoneutral water immersion (sham, n = 9), and participated in experiments before and after the 8-wk intervention in which forearm cutaneous hyperemia to 39°C local heating was assessed at three microdialysis sites receiving 1) Lactated Ringer's (Control), 2) Nω-nitro-l-arginine (l-NNA; nonspecific NO synthase inhibitor), and 3) 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), a superoxide dismutase mimetic. The arm used for microdialysis experiments remained out of the water at all times. Data are means ± SE cutaneous vascular conductance (CVC = laser Doppler flux/mean arterial pressure), presented as percent maximal CVC (% CVCmax). Heat therapy increased local heating plateau from 42 ± 6 to 53 ± 6% CVCmax ( P < 0.001) and increased NO-dependent dilation (difference in plateau between Control and l-NNA sites) from 26 ± 6 to 38 ± 4% CVCmax ( P < 0.01), while no changes were observed in the sham group. When data were pooled across all subjects at 0 wk, Tempol had no effect on the local heating response ( P = 0.53 vs. Control). There were no changes at the Tempol site across interventions ( P = 0.58). Passive heat therapy improves cutaneous microvascular function by improving NO-dependent dilation, which may have clinical implications.


2016 ◽  
Vol 1 ◽  
pp. 39-42
Author(s):  
Sebastián Carranza-Lira ◽  
Karina Vázquez Rodríguez ◽  
Sergio Rosales Ortiz

2015 ◽  
Vol 308 (10) ◽  
pp. H1215-H1220 ◽  
Author(s):  
James A. Lang ◽  
Kelsey E. Kolb

Stimulation of angiotensin II type I receptors (AT1R) elicits vasoconstriction (VC) that may be occurring through the activation of a pathogenic vascular pathway such as Rho kinase (ROCK). We hypothesize that reflex cutaneous VC to whole body cooling (mean skin temperature = 30.5°C) in older humans relies in part on AT1R activation, which may explain greater ROCK activity attendant with aging. Two microdialysis (MD) fibers were placed in the forearm skin of 10 young (Y; 24 ± 1 yr) and 10 older (O; 70 ± 2 yr) individuals for infusion of 1) lactated Ringer's solution (switched to fasudil, a ROCK antagonist, after cooling); and 2) AT1R blockade with losartan. Laser Doppler flux (LDF) was measured over each MD site and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/mean arterial pressure) and expressed as percent change from baseline (%ΔCVCBASELINE). In older individuals the VC response to whole body cooling was blunted (Y = −34 ± 2, O = −17 ± 3%ΔCVC) and was further attenuated at the losartan site (Y = −34 ± 3, O = −9 ± 3%ΔCVC; P < 0.05). The VC response to an exogenous 10-μM dose of angiotensin II (Y = −27 ± 3, O = −42 ± 5%ΔCVC) was completely blocked in sites pretreated with losartan or with fasudil. These data suggest that AT1R activation contributes to the reflex VC response in aged but not young skin. Furthermore, the angiotensin II component of the VC response appears to occur primarily through a ROCK-mediated mechanism.


2014 ◽  
Vol 307 (7) ◽  
pp. R914-R919 ◽  
Author(s):  
Anna E. Stanhewicz ◽  
Jody L. Greaney ◽  
W. Larry Kenney ◽  
Lacy M. Alexander

Local heating of the skin is commonly used to assess cutaneous microvasculature function. Controversy exists as to whether there are limb or sex differences in the nitric oxide (NO)-dependent contribution to this vasodilation, as well as the NO synthase (NOS) isoform mediating the responses. We tested the hypotheses that 1) NO-dependent vasodilation would be greater in the calf compared with the forearm; 2) total NO-dependent dilation would not be different between sexes within limb; and 3) women would exhibit greater neuronal NOS (nNOS)-dependent vasodilation in the calf. Two microdialysis fibers were placed in the skin of the ventral forearm and the calf of 19 (10 male and 9 female) young (23 ± 1 yr) adults for the local delivery of Ringer solution (control) or 5 mM Nω-propyl-l-arginine (NPLA; nNOS inhibition). Vasodilation was induced by local heating (42°C) at each site, after which 20 mM NG-nitro-l-arginine methyl ester (l-NAME) was perfused for within-site assessment of NO-dependent vasodilation. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial pressure and normalized to maximum (28 mM sodium nitroprusside, 43°C). Total NO-dependent vasodilation in the calf was lower compared with the forearm in both sexes (Ringer: 42 ± 5 vs. 62 ± 4%; P < 0.05; NPLA: 37 ± 3 vs. 59 ± 5%; P < 0.05) and total NO-dependent vasodilation was lower in the forearm for women (Ringer: 52 ± 6 vs. 71 ± 4%; P < 0.05; NPLA: 47 ± 6 vs. 68 ± 5%; P < 0.05). NPLA did not affect total or NO-dependent vasodilation across limbs in either sex ( P > 0.05). These data suggest that the NO-dependent component of local heating-induced cutaneous vasodilation is lower in the calf compared with the forearm. Contrary to our original hypothesis, there was no contribution of nNOS to NO-dependent vasodilation in either limb during local heating.


2013 ◽  
Vol 18 (3) ◽  
pp. 037005 ◽  
Author(s):  
Justin P. Phillips ◽  
Vincent Cibert-Goton ◽  
Richard M. Langford ◽  
Peter J. Shortland

2013 ◽  
Vol 55 (4) ◽  
pp. 411-416 ◽  
Author(s):  
F. Jung ◽  
B. Leithäuser ◽  
H. Landgraf ◽  
M. Jünger ◽  
U. Franzeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document