auroral particle precipitation
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
А.В. Николаев ◽  
С.А. Долгачёва ◽  
С.А. Черняева

Оценка положения экваториальных границ аврорального овала при разных магнитосферных условиях, несёт в себе информацию о формирующихся плазменных структурах, глубине их проникновения во внутреннюю магнитосферу, движении внутренней границы плазменного слоя и т.д. Развитие алгоритмов определения положения видимой экваториальной границы аврорального овала является важной частью исследований, связанных с разработкой моделей химического состава ионосферы, моделей авроральных высыпаний частиц и оценки точности этих моделей. Немаловажную роль исследования полярных сияний (прогноз, интенсивность, положение) играют и для развития туристического сегмента в Арктике и информационных ресурсов служб мониторинга и прогноза космической погоды. В рамках исследования оценки точности положения видимых границ овала сияний в моделях авроральных высыпаний частиц была выбрана наземная наблюдательная сеть оптических камер всего неба проекта THEMIS, запущенная в 2008 г., и модифицированная модель OVATION Prime (PC), разработанная в отделе Геофизики ФГБУ «ААНИИ использующая в качестве входного параметра наземный индекс полярной шапки (PC-индекс). The location of the equatorial boundaries of the auroral oval under different magnetospheric conditions contains information about the forming plasma structures, the depth of their penetration into the inner magnetosphere, the motion of the inner boundary of the plasma layer, etc. The development of methods and algorithms for determining the position of the visible equatorial boundary of the auroral oval is an important part of research related to the development of models of the chemical composition of the ionosphere, models of auroral particle precipitation, and assessment of the accuracy of these models. Research of aurora borealis (forecast, intensity, position) also plays an important role for the development of the tourist segment in the Arctic and information resources of space weather monitoring and forecasting services.


2021 ◽  
Vol 39 (4) ◽  
pp. 687-700
Author(s):  
Vladimir B. Belakhovsky ◽  
Yaqi Jin ◽  
Wojciech J. Miloch

Abstract. The comparative research of the influence of different types of auroral particle precipitation and polar cap patches (PCPs) on the global positioning system (GPS) signals disturbances in the polar ionosphere was done. For this purpose, we use the GPS scintillation receivers at Ny-Ålesund and Skibotn, operated by the University of Oslo. The presence of the auroral particle precipitation and polar cap patches was determined by using data from the EISCAT 42m radar on Svalbard. The optical aurora observations in 557.7 and 630.0 nm spectrum lines on Svalbard were used as well for the detection of ionospheric disturbances. The cusp identification was done with using SuperDARN (Hankasalmi) data. We consider events when the simultaneous EISCAT 42m and GPS data were available for the years 2010–2017, and in this paper we present, in detail, typical examples describing the overall picture, and we present the statistics for 120 events. We considered the dayside/cusp precipitation, substorm precipitation, daytime and nighttime PCPs, and precipitation associated with the interplanetary shock wave arrival. We demonstrate that substorm-associated precipitation (even without PCPs) can lead to a strong GPS phase (σϕ) scintillations up to ∼ 1.5–3 radians, which is much stronger than those usually produced by other types of considered ionosphere disturbances. The value of the substorm-phase scintillations in general correlate with the value of the geomagnetic field disturbance. But sometimes even a small geomagnetic substorm, when combined with the PCPs, produces quite strong phase scintillations. Cusp phase scintillations are lower than dayside PCPs scintillations. PCPs can lead to stronger ROT (rate of total electron content) variations than other types of ionosphere disturbances. So our observations suggest that the substorms and PCPs, being different types of the high-latitude disturbances, lead to the development of different types and scales of ionospheric irregularities.


2021 ◽  
Author(s):  
Vladimir B. Belakhovsky ◽  
Yaqi Jin ◽  
Wojciech J. Miloch

Abstract. The comparative research of the influence of different types of auroral particle precipitation and polar cap patches (PCP) on the GPS signals disturbances in the polar ionosphere was done. For this purpose, we use the GPS scintillation receivers at Ny-Ålesund and Skibotn, operated by the University of Oslo. The presence of the auroral particle precipitation and polar cap patches was determined by using data from the EISCAT 42 m radar on Svalbard. The optical aurora observations in 557.7 nm, 630.0 nm spectrum lines on Svalbard were used as well for the detection of ionospheric disturbances. The cusp identification was done with using SuperDARN (Hankasalmi) data. We consider about 150 events when the simultaneous EISCAT 42 m and GPS data were available for the 2010–2017 years, in paper we present in detail only typical examples describing the overall picture. It was considered the dayside/cusp precipitation, substorm precipitations, daytime and nighttime PCP, precipitation associated with the interplanetary shock wave arrival. Cusp phase scintillations are lower than dayside PCP scintillations. We demonstrate that substorm-associated precipitations (even without PCP) can lead to a strong GPS phase (σϕ) scintillations up to ~2 radians which is much stronger than those usually produced by other types of the considered ionosphere disturbances. At the same PCPs can lead to stronger ROT (rate of total electron content) variations. So our observations suggest that the substorms and PCPs, being different types of the high-latitude disturbances, lead to the development of different types and scales of ionospheric irregularities.


2020 ◽  
Author(s):  
Vladimir Belakhovsky ◽  
◽  
Yaqi Jin ◽  
Wojciech Miloch ◽  
◽  
...  

The comparative research of the influence of substrorm precipitation and polar cap patches (PCP) on the GPS signals disturbances in the polar ionosphere was done. For this aim we use the GPS scintillation receivers at Ny-Ålesund, operated by the University of Oslo. The presence of the auroral particle precipitation and polar cap patches was determined by using data from the EISCAT 42m radar on Svalbard. We consider tens of events when the simultaneous EISCAT 42m and GPS data were available. We demonstrate that substorm-associated precipitations can lead to a strong GPS phase (σΦ) scintillations up to ~2 radians which is much stronger than those usually produced by PCPs. At the same PCPs can lead to strong ROT (rate of total electron content) variations. So our observations suggest that the substorms and PCPs, being different types of the high-latitude disturbances, lead to the development of different types and scales of ionospheric irregularities.


2013 ◽  
Vol 40 (17) ◽  
pp. 4486-4490 ◽  
Author(s):  
T. T. Tsuda ◽  
S. Nozawa ◽  
T. D. Kawahara ◽  
T. Kawabata ◽  
N. Saito ◽  
...  

2013 ◽  
Vol 31 (5) ◽  
pp. 957-966
Author(s):  
G. W. Prölss

Abstract. By "polar cliff" we mean the steep increase in the ionization density observed in the morning sector of the polar ionosphere. Here the properties of this remarkable feature are investigated. The data set consists of electron density and temperature measurements obtained by the Dynamics Explorer 2 satellite. Only data recorded in the Northern Hemisphere winter are considered (solar zenith angle ≥ 90°). We find that for moderately disturbed conditions, the foot of the polar cliff is located below 60° invariant latitude. Here, within about 4°, the density increases by a factor of 4, on average. The actual location of the polar cliff depends primarily on the level of geomagnetic activity, its associated density increase on geographic longitude and altitude. As to the longitudinal variations, they are attributed to asymmetries in the background ionization density at middle latitudes. Using a superposed epoch type of averaging procedure, mean latitudinal profiles of the polar cliff and the associated electron temperature changes are derived. Since these differ significantly from those derived for the afternoon/evening sector, we conclude that the subauroral ionospheric trough does not extend into the morning sector. As to the origin of the polar cliff in the morning sector, local auroral particle precipitation should play only a secondary role.


Sign in / Sign up

Export Citation Format

Share Document