glycerol monooleate
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 26)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Nina Královič - Kanjaková ◽  
Lukáš Hubčík ◽  
Alexander Búcsi ◽  
Mária Klacsová ◽  
Sophie Combet ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 228
Author(s):  
Maria Romero-Peña ◽  
Supratim Ghosh

This study aimed to investigate gelation in glycerol monooleate (GMO)-stabilized water-in-canola oil (W/CO) emulsions by increasing water content (20–50 wt.%) and the addition of low methoxyl pectin (LMP) in the aqueous phase. A constant ratio of GMO to water was used to keep a similar droplet size in all emulsions. Hydrogenated soybean oil (7 wt.%) was used to provide network stabilization in the continuous phase. All fresh emulsions with LMP in the aqueous phase formed a stable and self-supported matrix with higher viscosity and gel strength than emulsions without LMP. Emulsion viscosity and gel strength increased with an increase in water content. All emulsions showed gel-like properties (storage moduli (G’) > loss moduli (G’’)) related to the presence of LMP in the aqueous phase and increased water content. Freeze/thaw analysis using a differential scanning calorimeter showed improved stability of the water droplets in the presence of LMP in the aqueous phase. This study demonstrated the presence of LMP in the aqueous phase, its interaction with GMO at the interface, and fat crystals in the continuous phase that could support the water droplets’ aggregation to obtain stable elastic W/CO emulsions that could be used as low-fat table spreads.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252203
Author(s):  
Weiwei Wang ◽  
Zhuangzhuang Liu ◽  
Qimin Song ◽  
Xindi Zhang ◽  
Shengkai Jiao ◽  
...  

The tribological performance of organic molybdenum in the present of organic friction modifier was investigated in this study. Three types of organic friction modifiers were selected, which are Glycerol monooleate, Pentaerythritol and N,N-Dimethylhexadecylamine. The organic molybdenum are MoDTC, MoDDP and molybdenum amide. Friction coefficient and wear were studied in block-on-ring test rig with steel test specimens. Experimental results indicate the Pentaerythritol shows synergistic effect with MoDTC in wide range temperature, while increased the friction coefficient of molybdenum amide in high temperature. N,N-Dimethylhexadecylamine shows synergistic effect with molybdenum amide, while hindered the friction reduction performance of MoDTC in low temperature. The presence of Glycerol monooleate reduced friction coefficient of MoDTC in low temperature, while increased the friction coefficient of molybdenum amide in most situations. All the tested organic friction modifiers improved the friction reduction performance of MoDDP. Most of the tested organic friction modifiers reduced the wear of organic molybdenum. The PT shows the best anti-wear performance with MoDTC. The tribo-chemical products in test specimens lubricated with different lubricant formulas indicate that the presences of Pentaerythritol promotes the production of MoS2 in MoDTC. N,N-Dimethylhexadecylamine promotes the production of MoS2 in molybdenum amide. The side products of MoO1.6S1.6 and Cr/MoS2 of MoDDP in high temperature lead to high friction coefficient.


2021 ◽  
Author(s):  
Ruby R. Rafanan

Emulsified microemulsions (EMEs), first described in detail in 2005 by the group of Garti, consist of a thermodynamically stable water-in-oil microemulsion phase (w1/o) further dispersed within an aqueous continuous phase (w2). These internally-structured w1/o/w2 dispersions are promising controlled release vehicles for water-soluble flavouring compounds, drugs and nutraceuticals. With a stable internal droplet structure, storage stability is improved over non-thermodynamically stable structured emulsions and may exhibit unique controlled release behaviour. Use of food-grade components allows for wider and safer applications in food and pharmaceutical products. In this thesis, a food-grade w1/o microemulsion consisting of glycerol monooleate, tricaprylin and water was dispersed in an aqueous (w2) phase by membrane emulsification and stabilized by a caseinate-pectin complex to produce w1/o/w2 EMEs. The resulting EME showed no signs of phase separation for weeks at room temperature. The microemulsion and EME were characterized by differential scanning calorimetry (DSC), cryo-TEM and small angle x-ray scattering (SAXS) to determine whether the microemulsion’s internal structure was maintained after emulsification. It was shown that EME droplets displayed ordering around the periphery consistent with some loss of microemulsion structure, but maintained the characteristic disordered microemulsion structure at the droplet core. Overall, this research demonstrated the feasibility of developing EME for possible applications in food and non-food applications.


2021 ◽  
Author(s):  
Ruby R. Rafanan

Emulsified microemulsions (EMEs), first described in detail in 2005 by the group of Garti, consist of a thermodynamically stable water-in-oil microemulsion phase (w1/o) further dispersed within an aqueous continuous phase (w2). These internally-structured w1/o/w2 dispersions are promising controlled release vehicles for water-soluble flavouring compounds, drugs and nutraceuticals. With a stable internal droplet structure, storage stability is improved over non-thermodynamically stable structured emulsions and may exhibit unique controlled release behaviour. Use of food-grade components allows for wider and safer applications in food and pharmaceutical products. In this thesis, a food-grade w1/o microemulsion consisting of glycerol monooleate, tricaprylin and water was dispersed in an aqueous (w2) phase by membrane emulsification and stabilized by a caseinate-pectin complex to produce w1/o/w2 EMEs. The resulting EME showed no signs of phase separation for weeks at room temperature. The microemulsion and EME were characterized by differential scanning calorimetry (DSC), cryo-TEM and small angle x-ray scattering (SAXS) to determine whether the microemulsion’s internal structure was maintained after emulsification. It was shown that EME droplets displayed ordering around the periphery consistent with some loss of microemulsion structure, but maintained the characteristic disordered microemulsion structure at the droplet core. Overall, this research demonstrated the feasibility of developing EME for possible applications in food and non-food applications.


2021 ◽  
Author(s):  
Samira Haj-Shafiei

The objective of this study was to characterize the flow and rheological behaviour of model wax-stabilized water-in-oil (W/O) emulsions consisting of light mineral oil, paraffin wax and glycerol monooleate as the oil phase and water as the dispersed aqueous phase. An[sic] laboratory-scale benchtop flowloop system was used to explore the flow behaviour of the emulsions' oil phase (oil, paraffin wax and surfactant). The key contribution from this work was that the higher initial temperature gradient (40°C compared to 19°C) experienced by the rapidly-cooled oil led to more initial deposition on the flowloop inner wall. The rheological properties of W/O emulsions with different water cuts (10-50wt%) were also studied. Rotational, oscillatory rheology and creep compliance and recovery were characterized on emulsions aged up to 28 days. Overall, the results demonstrated that emulsion composition, and age could significantly influence an emulsion's flow behaviour and rheological properties.


2021 ◽  
Author(s):  
Samira Haj-Shafiei

The objective of this study was to characterize the flow and rheological behaviour of model wax-stabilized water-in-oil (W/O) emulsions consisting of light mineral oil, paraffin wax and glycerol monooleate as the oil phase and water as the dispersed aqueous phase. An[sic] laboratory-scale benchtop flowloop system was used to explore the flow behaviour of the emulsions' oil phase (oil, paraffin wax and surfactant). The key contribution from this work was that the higher initial temperature gradient (40°C compared to 19°C) experienced by the rapidly-cooled oil led to more initial deposition on the flowloop inner wall. The rheological properties of W/O emulsions with different water cuts (10-50wt%) were also studied. Rotational, oscillatory rheology and creep compliance and recovery were characterized on emulsions aged up to 28 days. Overall, the results demonstrated that emulsion composition, and age could significantly influence an emulsion's flow behaviour and rheological properties.


Sign in / Sign up

Export Citation Format

Share Document