thermoacoustic properties
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 149 (6) ◽  
pp. 3878-3888
Author(s):  
Elio Di Giulio ◽  
Fabio Auriemma ◽  
Marialuisa Napolitano ◽  
Raffaele Dragonetti

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vikrant Abbot ◽  
Poonam Sharma

AbstractFlavonoids amongst the class of secondary metabolites possess numerous health benefits, are known for its use in pharmaceutical industry. Quercetin, a flavonoid has more prominent medical advantages however its utilization is constrained because of various instability and insolubility issues and therefore, taken into consideration for studying its physico-chemical properties. In view of that, the thermodynamic and thermoacoustic properties of quercetin were examined in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) at different hydroethanolic concentrations and temperatures. The conductivity studies were used to calculate change in enthalpy (∆Hom), change in entropy (∆Som) and change in Gibbs free Energy (∆Gom) of micellization. The interactions between quercetin and CTAB were found to be endothermic, entropically controlled and spontaneous. Further, ultrasonic sound velocity and density studies were carried out and utilized for the calculation of thermoacoustic parameters i.e. apparent molar volume and apparent molar compressibility. Thermoacoustic properties revealed that at higher surfactant concentration, hydrophobic interactions are dominant. The results suggested that the flavonoid-surfactant interactions in hydroethanolic solutions is more favourable as compared with aqueous solution. Overall, the data is favourable for the framework to be used for detailing advancement, drug development, drug industry, pharmaceutical industry, medical administration and formulation development studies.


Author(s):  
Matthias Haeringer ◽  
Guillaume Jean Jacques Fournier ◽  
Maximilian Meindl ◽  
Wolfgang Polifke

Abstract Thermoacoustic properties of can-annular combustors are commonly investigated by means of single-can test-rigs. To obtain representative results, it is crucial to mimic can-can coupling present in the full engine. However, current approaches either lack a solid theoretical foundation or are not practicable for high-pressure rigs. In the present study we employ Bloch-wave theory to derive reflection coefficients that correctly represent can-can coupling. We propose a strategy to impose such reflection coefficients at the acoustic terminations of a single-can test-rig by installing passive acoustic elements, namely straight ducts or Helmholtz resonators. In an iterative process, these elements are adapted to match the reflection coefficients for the dominant frequencies of the full engine. The strategy is demonstrated with a network model of a generic can-annular combustor and a 3D model of a realistic can-annular combustor configuration. For the latter we show that can-can coupling via the compressor exit plenum is negligible for frequencies sufficiently far away from plenum eigenfrequencies. Without utilizing previous knowledge of relevant frequencies or flame dynamics, the test-rig models are adapted within a few iterations and match the full engine with good accuracy. Using Helmholtz resonators for test-rig adaption turns out to be more viable than using straight ducts.


Author(s):  
Matthias Haeringer ◽  
Guillaume J. J. Fournier ◽  
Max Meindl ◽  
Wolfgang Polifke

Abstract Thermoacoustic properties of can-annular combustors are commonly investigated by means of single-can test-rigs. To obtain representative results, it is crucial to mimic can-can coupling present in the full engine. However, current approaches either lack a solid theoretical foundation or are not practicable for high-pressure rigs. In the present study we employ Bloch-wave theory to derive reflection coefficients that correctly represent can-can coupling. We propose a strategy to impose such reflection coefficients at the acoustic terminations of a single-can test-rig by installing passive acoustic elements, namely straight ducts or Helmholtz resonators. In an iterative process, these elements are adapted to match the reflection coefficients for the dominant frequencies of the full engine. The strategy is demonstrated with a network model of a generic can-annular combustor and a 3D model of a realistic can-annular combustor configuration. For the latter we show that can-can coupling via the compressor exit plenum is negligible for frequencies sufficiently far away from plenum eigenfrequencies. Without utilizing previous knowledge of relevant frequencies or flame dynamics, the test-rig models are adapted within a few iterations and match the full engine with good accuracy. Using Helmholtz resonators for test-rig adaption turns out to be more viable than using straight ducts.


2018 ◽  
Vol 191 ◽  
pp. 486-495 ◽  
Author(s):  
Naseh Hosseini ◽  
Viktor N. Kornilov ◽  
Omke J. Teerling ◽  
Ines Lopez Arteaga ◽  
Philip de Goey

Author(s):  
R S Shriwas ◽  
O P Chimankar ◽  
P V Tabhane ◽  
S P Dange ◽  
Y D Tembhurkar

2012 ◽  
Vol 2012.17 (0) ◽  
pp. 183-184
Author(s):  
Shu-han HSU ◽  
Atsushi OBAYASHI ◽  
Tetsushi BIWA

Sign in / Sign up

Export Citation Format

Share Document