smooth closed manifold
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiaolong Li ◽  
Katsutoshi Shinohara

<p style='text-indent:20px;'>We say that a diffeomorphism <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula> is super-exponentially divergent if for every <inline-formula><tex-math id="M2">\begin{document}$ b&gt;1 $\end{document}</tex-math></inline-formula> the lower limit of <inline-formula><tex-math id="M3">\begin{document}$ \#\mbox{Per}_n(f)/b^n $\end{document}</tex-math></inline-formula> diverges to infinity, where <inline-formula><tex-math id="M4">\begin{document}$ \mbox{Per}_n(f) $\end{document}</tex-math></inline-formula> is the set of all periodic points of <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> with period <inline-formula><tex-math id="M6">\begin{document}$ n $\end{document}</tex-math></inline-formula>. This property is stronger than the usual super-exponential growth of the number of periodic points. We show that for any <inline-formula><tex-math id="M7">\begin{document}$ n $\end{document}</tex-math></inline-formula>-dimensional smooth closed manifold <inline-formula><tex-math id="M8">\begin{document}$ M $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M9">\begin{document}$ n\ge 3 $\end{document}</tex-math></inline-formula>, there exists a non-empty open subset <inline-formula><tex-math id="M10">\begin{document}$ \mathcal{O} $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M11">\begin{document}$ \mbox{Diff}^1(M) $\end{document}</tex-math></inline-formula> such that diffeomorphisms with super-exponentially divergent property form a dense subset of <inline-formula><tex-math id="M12">\begin{document}$ \mathcal{O} $\end{document}</tex-math></inline-formula> in the <inline-formula><tex-math id="M13">\begin{document}$ C^1 $\end{document}</tex-math></inline-formula>-topology. A relevant result about the growth rate of the lower limit of the number of periodic points for diffeomorphisms in a <inline-formula><tex-math id="M14">\begin{document}$ C^r $\end{document}</tex-math></inline-formula>-residual subset of <inline-formula><tex-math id="M15">\begin{document}$ \mbox{Diff}^r(M)\ (1\le r\le \infty) $\end{document}</tex-math></inline-formula> is also shown.</p>


2019 ◽  
Vol 11 (03) ◽  
pp. 535-555 ◽  
Author(s):  
Lee Kennard ◽  
Zhixu Su

A rational projective plane ([Formula: see text]) is a simply connected, smooth, closed manifold [Formula: see text] such that [Formula: see text]. An open problem is to classify the dimensions at which such a manifold exists. The Barge–Sullivan rational surgery realization theorem provides necessary and sufficient conditions that include the Hattori–Stong integrality conditions on the Pontryagin numbers. In this paper, we simplify these conditions and combine them with the signature equation to give a single quadratic residue equation that determines whether a given dimension supports a [Formula: see text]. We then confirm the existence of a [Formula: see text] in two new dimensions and prove several non-existence results using factorization of the numerators of the divided Bernoulli numbers. We also resolve the existence question in the Spin case, and we discuss existence results for the more general class of rational projective spaces.


Author(s):  
Yasuhiko Kamiyama

Forn≥2, letMbe ann-dimensional smooth closed manifold andf:M→Ra smooth function. We setminf(M)=mand assume thatmis attained by unique pointp∈Msuch thatpis a nondegenerate critical point. Then the Morse lemma tells us that ifais slightly bigger thanm,f-1(a)is diffeomorphic toSn-1. In this paper, we relax the condition onpfrom being nondegenerate to being an isolated critical point and obtain the same consequence. Some application to the topology of polygon spaces is also included.


2014 ◽  
Vol 06 (03) ◽  
pp. 305-338 ◽  
Author(s):  
T. O. Rot ◽  
R. C. A. M. Vandervorst

The gradient flow of a Morse function on a smooth closed manifold generates, under suitable transversality assumptions, the Morse–Smale–Witten complex. The associated Morse homology is an invariant for the manifold, and equals the singular homology, which yields the classical Morse relations. In this paper we define Morse–Conley–Floer homology, which is an analogous homology theory for isolated invariant sets of smooth, not necessarily gradient-like, flows. We prove invariance properties of the Morse–Conley–Floer homology, and show how it gives rise to the Morse–Conley relations.


Author(s):  
Carla Farsi ◽  
Christopher Seaton

AbstractWe present structure theorems in terms of inertial decompositions for the wreath product ring of an orbifold presented as the quotient of a smooth, closed manifold by a compact, connected Lie group acting almost freely. In particular we show that this ring admits λ-ring and Hopf algebra structures both abstractly and directly. This generalizes results known for global quotient orbifolds by finite groups.


1999 ◽  
Vol 59 (2) ◽  
pp. 271-295
Author(s):  
Victor Brunsden

Stowe's Theorem on the stability of the fixed points of a C2 action of a finitely generated group Γ is generalised to C1 actions of such groups on Banach manifolds. The result is then used to prove that if φ is a Cr action on a smooth, closed, manifold M satisfying H1(Γ, Dr−1(M)) = 0, then φ is locally rigid. Here, r ≥ 2 and Dk(M) is the space of Ck tangent vector fields on M. This generalises a local rigidity result of Weil for representations of a finitely generated group Γ in a Lie group.


Sign in / Sign up

Export Citation Format

Share Document