radiotherapy dosimetry
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 32)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 190 ◽  
pp. 109782
Author(s):  
V. Mariotti ◽  
A. Gayol ◽  
T. Pianoschi ◽  
F. Mattea ◽  
J. Vedelago ◽  
...  

2021 ◽  
Author(s):  
Katia Manolova Sergieva

The clinical specialty of radiotherapy is an essential part of the multidisciplinary process of treatment of malignant neoplasms. Modern radiotherapy is a very complex process of treatment planning and delivery of radiation dose. Radiotherapy reached a very high degree of complexity and sophistication and expected to represent an added value for the cancer patients in terms of clinical outcomes and improved radiation protection. The concept of verifying the realized dose in the medical applications of ionizing radiation was introduced in the early 20th century shortly after the first application of X-rays for the treatment of cancer. Dosimetry audit identify areas for improvement and provide confidence in safety and efficacy, which are essential to creating a clinical environment of continuous development and improvement. Over the years, the audits have contributed to good dosimetry practice and accuracy of dose measurements in modern radiotherapy. Dosimetry audit ensures, that the correct therapeutic dose is delivered to the patients undergoing radiotherapy and play a key role in activities to create a good radiation protection and safety culture. Patient safety is of paramount importance to medical staff in radiotherapy centers and safety considerations are an element in all aspects of the day-to-day clinical activities.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8139
Author(s):  
Marie-Anne Lebel-Cormier ◽  
Tommy Boilard ◽  
Martin Bernier ◽  
Luc Beaulieu

Fiber Bragg gratings (FBGs) are valuable dosimeters for doses up to 100 kilograys (kGy), but have hardly been used for the low-dose range of a few grays (Gy) required in medical radiation dosimetry. We report that embedding a doped silica fiber FBG in a polymer material allows a minimum detectable dose of 0.3 Gy for γ-radiation. Comparing the detector response for different doped silica fibers with various core doping, we obtain an independent response, in opposition to what is reported for high-dose range. We hypothesized that the sensor detection is based on the radio-induced thermal expansion of the surrounding polymer. Hence, we used a simple physical model based on the thermal and mechanical properties of the surrounding polymer and obtained good accordance between measured and calculated values for different compositions and thicknesses. We report that over the 4 embedding polymers tested, polyether ether ketone and polypropylene have respectively the lowest (0.056 pm/Gy) and largest sensitivity (0.087 pm/Gy). Such FBG-based dosimeters have the potential to be distributed along the fiber to allow multipoint detection while having a sub-millimeter size that could prove very useful for low-dose applications, in particular for radiotherapy dosimetry.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0258264
Author(s):  
Siti Nurasiah Mat Nawi ◽  
S. F. Abdul Sani ◽  
M. U. Khandaker ◽  
N. M. Ung ◽  
K. S. Almugren ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1654
Author(s):  
Jun Zhang ◽  
Ziting Fan ◽  
Xile Zhang ◽  
Ruijie Yang ◽  
Junhai Wen

Support arm backscatter and off-axis effects of an electronic portal imaging device (EPID) are challenging for radiotherapy quality assurance. Aiming at the issue, we proposed a simple yet effective method with correction matrices to rectify backscatter and off-axis responses for EPID images. First, we measured the square fields with ionization chamber array (ICA) and EPID simultaneously. Second, we calculated the dose-to-pixel value ratio and used it as the correction matrix of the corresponding field. Third, the correction value of the large field was replaced with that of the same point in the small field to generate a correction matrix suitable for different EPID images. Finally, we rectified the EPID image with the correction matrix, and then the processed EPID images were converted into the absolute dose. The calculated dose was compared with the measured dose via ICA. The gamma pass rates of 3%/3 mm and 2%/2 mm (5% threshold) were 99.6% ± 0.94% and 95.48% ± 1.03%, and the average gamma values were 0.28 ± 0.04 and 0.42 ± 0.05, respectively. Experimental results verified our method accurately corrected EPID images and converted pixel values into absolute dose values such that EPID was an efficient radiotherapy dosimetry tool.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peng Tang ◽  
Chen Tan ◽  
Qingsong Pang ◽  
Chih-Wen Chi ◽  
Yuwen Wang ◽  
...  

Esophageal cancer is a common malignancy worldwide and a leading cause of cancer-related mortality. Definitive concurrent chemoradiotherapy (CCRT) has been widely used to treat locally advanced esophageal squamous cell carcinoma (ESCC). In this study, we evaluated the predictive power of a 35-gene mutation profile and radiation parameters in patients with ESCC. Data from 44 patients with ESCC who underwent definitive CCRT were retrospectively reviewed. A 35-gene mutation profile, derived from reported ESCC-specific next-generation sequencing results, and radiation dosimetry parameters were examined using the Kaplan–Meier curve and Cox proportional hazards model. All patients were native Chinese and underwent CCRT with a median follow-up time of 22.0 months. Significant prognostic factors affecting progression-free survival in the multivariable Cox regression model were clinical nodal staging ≥2 (hazard ratio, HR: 2.52, 95% CI: 1.15–5.54, p = 0.022), ≥10% lung volume receiving ≥30 Gy (V30) (HR: 2.36, 95% CI: 1.08–5.17, p = 0.032), and mutation of fibrous sheath interacting protein 2 (FSIP2) (HR: 0.08, 95% CI: 0.01–0.58, p = 0.013). For overall survival, significant prognostic factors in the multivariable Cox regression model were lung V30 ≥10% (HR: 3.71, 95% CI: 1.48–9.35, p = 0.005) and mutation of spectrin repeat containing nuclear envelope protein 1 (SYNE1) (HR: 2.95, 95% CI: 1.25–6.97, p = 0.014). Our cohort showed higher MUC17 (79.5% vs. 5.7%), FSIP2 (18.2% vs. 6.2%), and SYNE1 (38.6% vs. 11.0%) mutation rates and lower TP53 (38.6% vs. 68.7%) mutation rates than the ESCC cohorts from The Cancer Genome Atlas. In conclusion, by using a combination of a 35-gene mutation profile and radiotherapy dosimetry, mutations in FSIP2 and SYNE1 as well as lung V30 were identified as potential predictors for developing a prediction model for clinical outcomes in patients with ESCC administered definitive CCRT.


Author(s):  
Asieh Amarlou ◽  
Kheirollah Mohammadi ◽  
Nooshin Banaee ◽  
Hassan Ali Nedaei

2021 ◽  
Vol 161 ◽  
pp. S1302-S1303
Author(s):  
T. Knapton ◽  
M. Masterson ◽  
A. Parmer ◽  
A. Nisbet ◽  
S. Jafari

2021 ◽  
Author(s):  
Simon K Goodall ◽  
Peter Rampant ◽  
Warwick Smith ◽  
David Waterhouse ◽  
Pejman Rowshanfarzad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document