active locomotion
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Anna Luzzi ◽  
Giuseppe Tortora

An endoscopic capsule is a miniaturized ingestible video camera used to acquire images of the gastrointestinal tract wirelessly. Being morphologically equivalent to any ingestible pill, they can be simply swallowed. Endoscopic capsules therefore present an inviting alternative to the traditional endoscope for the examination of the gastrointestinal tract as well for therapeutic purposes. Endoscopic capsules are considered a disruptive technology, as they have revolutionized the examination of the gastrointestinal tract in a relatively short time. The implementation of an active locomotion system can improve the performance of a capsule and, in the solution proposed in this paper, allows providing the capsule the needed power for therapeutic purposes. Alternative therapeutic solutions, based on optical solutions and capsule endoscopy can be applied to patients affected by Helicobacter pylori, a bacterium of the stomach that affects about half of the world population, mainly in developing countries. The infection can be asymptomatic or associated with slight symptomatology. In some cases, it can take to major pathologies or death. The literature reports results deriving from recent applications of photodynamic treatments to H. pylori. Specific wavelengths have been found to exhibit photo-killing capabilities toward the bacterium. Some solutions have been proposed based on the use of endoscopic devices and capsules capable of administering photodynamic therapy inside the stomach. The proposed treatments, however, are invasive and insufficient to achieve long-term eradication. In this work, the administration of photodynamic therapy is proposed, aimed at the eradication of H. pylori by means of an active endoscopic capsule with LED emission. The capsule design, in addition to the therapeutic module aimed at administering an appropriate light intensity at specific wavelengths already demonstrated in the literature, integrates an active locomotion system aimed at maximizing the efficiency of the treatment.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1878
Author(s):  
Manh Cuong Hoang ◽  
Kim Tien Nguyen ◽  
Jayoung Kim ◽  
Jong-Oh Park ◽  
Chang-Sei Kim

This paper presents an active locomotion capsule endoscope system with 5D position sensing and real-time automated polyp detection for small-bowel and colon applications. An electromagnetic actuation system (EMA) consisting of stationary electromagnets is utilized to remotely control a magnetic capsule endoscope with multi-degree-of-freedom locomotion. For position sensing, an electronic system using a magnetic sensor array is built to track the position and orientation of the magnetic capsule during movement. The system is integrated with a deep learning model, named YOLOv3, which can automatically identify colorectal polyps in real-time with an average precision of 85%. The feasibility of the proposed method concerning active locomotion and localization is validated and demonstrated through in vitro experiments in a phantom duodenum. This study provides a high-potential solution for automatic diagnostics of the bowel and colon using an active locomotion capsule endoscope, which can be applied for a clinical site in the future.


2020 ◽  
Author(s):  
Fan Zhang ◽  
Dongxu Ye ◽  
Shuang Song

Abstract This paper presents a legged and clamper-based capsule robot with active locomotion function. The capsule robot (CR) utilizes the extension and contraction of the anchoring legs to expand the collapsed intestinal wall, crawl in the intestinal tract, and stand in large spaces such as the stomach and large intestine organs. The mechanical structure design, kinematic analysis, principle of locomotion and force analysis of the CR are presented. The design concept and locomotion principles of the proposed CR are verified by a prototype with the diameter of 13 mm and length of 39 mm. Three experiments were conducted to test the locomotion performance of the proposed CR. In the experiments, the prototype successfully expands the collapsed phantom intestine, stands on the plane and moves forward in transparent tube at a promising speed. Experimental results indicate that the CR has good locomotion capabilities.


2020 ◽  
Vol 12 (4) ◽  
pp. 406-415
Author(s):  
Leigh Gray ◽  
Erandi Lakshika ◽  
Michael Barlow
Keyword(s):  

2020 ◽  
Vol 53 (4) ◽  
pp. 395-401
Author(s):  
Dong Jun Oh ◽  
Kwang Seop Kim ◽  
Yun Jeong Lim

2020 ◽  
Vol 6 (18) ◽  
pp. eaaz9125
Author(s):  
Lin Ren ◽  
Ling Yuan ◽  
Qingyu Gao ◽  
Rui Teng ◽  
Jing Wang ◽  
...  

Asymmetry in the interaction between an individual and its environment is generally considered essential for the directional properties of active matter, but can directional locomotions and their transitions be generated only from intrinsic chemical dynamics and its modulation? Here, we examine this question by simulating the locomotion of a bioinspired active gel in a homogeneous environment. We find that autonomous directional locomotion emerges in the absence of asymmetric interaction with the environment and that a transition between modes of gel locomotion can be induced by adjusting the spatially uniform intensity of illumination or certain kinetic and mechanical system parameters. The internal wave dynamics and its structural modulation act as the impetus for signal-driven active locomotion in a manner similar to the way in which an animal’s locomotion is generated via driving by nerve pulses. Our results may have implications for the development of soft robots and biomimetic materials.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 736
Author(s):  
Linlin Wu ◽  
Kaiyuan Lu

A new bi-directional, simple-structured solenoid actuator for active locomotion capsule robots (CRs) is investigated in this paper. This active actuator consists of two permanent magnets (PMs) attached to the two ends of the capsule body and a vibration inner mass formed by a solenoidal coil with an iron core. The proposed CR, designed as a sealed structure without external legs, wheels, or caterpillars, can achieve both forward and backward motions driven by the internal collision force. This new design concept has been successfully confirmed on a capsule prototype. The measured displacements show that its movement can be easily controlled by changing the supplied current amplitude and frequency of the solenoid actuator. To validate the new bi-directional CR prototype, various experimental as well as finite element analysis results are presented in this paper.


PLoS Biology ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. e3000361 ◽  
Author(s):  
Elisabeth Maluck ◽  
Inka Busack ◽  
Judith Besseling ◽  
Florentin Masurat ◽  
Michal Turek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document