scholarly journals Development and Verification of Mechanism for Enhancement of Steering Angle and Active Locomotion for Magnetic Micro Active-Guidewire

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 31103-31113
Author(s):  
Guk-Hong Jeon ◽  
Sung Hoon Kim
Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


2001 ◽  
Vol 29 (2) ◽  
pp. 108-132 ◽  
Author(s):  
A. Ghazi Zadeh ◽  
A. Fahim

Abstract The dynamics of a vehicle's tires is a major contributor to the vehicle stability, control, and performance. A better understanding of the handling performance and lateral stability of the vehicle can be achieved by an in-depth study of the transient behavior of the tire. In this article, the transient response of the tire to a steering angle input is examined and an analytical second order tire model is proposed. This model provides a means for a better understanding of the transient behavior of the tire. The proposed model is also applied to a vehicle model and its performance is compared with a first order tire model.


1973 ◽  
Vol 1 (2) ◽  
pp. 121-137 ◽  
Author(s):  
J. L. McCarty ◽  
T. J. W. Leland

Abstract The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hajira Saleem ◽  
Faisal Riaz ◽  
Leonardo Mostarda ◽  
Muaz A. Niazi ◽  
Ammar Rafiq ◽  
...  

Author(s):  
Daksh Bhatia ◽  
Praneeth KR ◽  
Babu Rao Ponangi ◽  
Meghana Athadkar ◽  
Carine V Dsouza

Non-pneumatic tyres (NPT) provide a greater advantage over the pneumatic type owing to their construct which increases the reliability of the tyre operation and effectively reduces maintenance involved. Analysing the aerodynamic forces acting on a NPT becomes a crucial factor in understanding it’s suitability for practical implementation. In the present work, the aerodynamic performance of a NPT using CFD tool – SimScale® is studied. This work includes a comparative study of a pneumatic tyre, a NPT with wedge spokes and a NPT with hexagonal spokes (NPT-HS). The effect of air velocity, steering (yaw) angle and camber angle on the aerodynamic performance of the NPT-HS is evaluated using CFD. By increasing the steering angle from 0° to 15°, the lift coefficient decreases by 37% approximately at all velocities. Whereas drag coefficient initially decreases by 21% till 7.5° steering angle and then starts increasing. Increasing camber angle from 0° to 1.5°, both drag and lift coefficients goes on decreasing by approximately 7% and 27% respectively.


Author(s):  
Yan Ti ◽  
Kangcheng Zheng ◽  
Wanzhong Zhao ◽  
Tinglun Song

To improve handling and stability for distributed drive electric vehicles (DDEV), the study on four wheel steering (4WS) systems can improve the vehicle driving performance through enhancing the tracking capability to desired vehicle state. Most previous controllers are either a large amount of calculation, or requires a lot of experimental data, these are relatively time-consuming and laborious. According to the front and rear wheel steering angle of DDEV can be distributed independently, a novel controller named internal model controller with fractional-order filter (IMC-FOF) for 4WS systems is proposed and studied in this paper. The IMC-FOF is designed using the internal model control theory and compared with IMC and PID controller. The influence of time constant and fractional-order parameters which is optimized using quantum genetic algorithms (QGA) on tracking ability of vehicle state are also analyzed. Using a production vehicle as an example, the simulation is performed combining Matlab/Simulink and CarSim. The comparison results indicated that the proposed controller presents performance to distribute the front and rear wheel steering angle for ensuring better tracking capability to desired vehicle state, meanwhile it possesses strong robustness.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1291
Author(s):  
Balázs Németh

The paper proposes a novel learning-based coordination strategy for lateral control systems of automated vehicles. The motivation of the research is to improve the performance level of the coordinated system compared to the conventional model-based reconfigurable solutions. During vehicle maneuvers, the coordinated control system provides torque vectoring and front-wheel steering angle in order to guarantee the various lateral dynamical performances. The performance specifications are guaranteed on two levels, i.e., primary performances are guaranteed by Linear Parameter Varying (LPV) controllers, while secondary performances (e.g., economy and comfort) are maintained by a reinforcement-learning-based (RL) controller. The coordination of the control systems is carried out by a supervisor. The effectiveness of the proposed coordinated control system is illustrated through high velocity vehicle maneuvers.


Science ◽  
2019 ◽  
Vol 364 (6445) ◽  
pp. 1087-1090 ◽  
Author(s):  
Shi-Qiang Li ◽  
Xuewu Xu ◽  
Rasna Maruthiyodan Veetil ◽  
Vytautas Valuckas ◽  
Ramón Paniagua-Domínguez ◽  
...  

Rapidly developing augmented reality, solid-state light detection and ranging (LIDAR), and holographic display technologies require spatial light modulators (SLMs) with high resolution and viewing angle to satisfy increasing customer demands. Performance of currently available SLMs is limited by their large pixel sizes on the order of several micrometers. Here, we propose a concept of tunable dielectric metasurfaces modulated by liquid crystal, which can provide abrupt phase change, thus enabling pixel-size miniaturization. We present a metasurface-based transmissive SLM, configured to generate active beam steering with >35% efficiency and a large beam deflection angle of 11°. The high resolution and steering angle obtained provide opportunities to develop the next generation of LIDAR and display technologies.


Robotica ◽  
2011 ◽  
Vol 30 (4) ◽  
pp. 517-535 ◽  
Author(s):  
Maciej Michałek ◽  
Krzysztof Kozłowski

SUMMARYThe paper introduces a novel general feedback control framework, which allows applying the motion controllers originally dedicated for the unicycle model to the motion task realization for the car-like kinematics. The concept is formulated for two practically meaningful motorizations: with a front-wheel driven and with a rear-wheel driven. All the three possible steering angle domains for car-like robots—limited and unlimited ones—are treated. Description of the method is complemented by the formal stability analysis of the closed-loop error dynamics. The effectiveness of the method and its limitations have been illustrated by numerous simulations conducted for the three main control tasks, namely, for trajectory tracking, path following, and set-point regulation.


Sign in / Sign up

Export Citation Format

Share Document