scholarly journals A Development Study of a New Bi-directional Solenoid Actuator for Active Locomotion Capsule Robots

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 736
Author(s):  
Linlin Wu ◽  
Kaiyuan Lu

A new bi-directional, simple-structured solenoid actuator for active locomotion capsule robots (CRs) is investigated in this paper. This active actuator consists of two permanent magnets (PMs) attached to the two ends of the capsule body and a vibration inner mass formed by a solenoidal coil with an iron core. The proposed CR, designed as a sealed structure without external legs, wheels, or caterpillars, can achieve both forward and backward motions driven by the internal collision force. This new design concept has been successfully confirmed on a capsule prototype. The measured displacements show that its movement can be easily controlled by changing the supplied current amplitude and frequency of the solenoid actuator. To validate the new bi-directional CR prototype, various experimental as well as finite element analysis results are presented in this paper.

Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 81
Author(s):  
Atif Zahid ◽  
Faisal Khan ◽  
Naseer Ahmad ◽  
Irfan Sami ◽  
Wasiq Ullah ◽  
...  

A dual mover yokeless multi-tooth (DMYMT) permanent magnet flux switching motor (PM-FSM) design is presented in this article for ropeless elevator applications. The excitation sources, including a field winding and permanent magnet, are on the short mover in the proposed design structure, whereas the stator is a simple slotted iron core, thus reducing the vertical transportation system cost. The operational principle of the proposed DMYMT in PM-FSM is introduced. The proposed dual mover yokeless multi-tooth Permanent Magnet Flux Switching Motor is analyzed and compared for various performance parameters in a Finite Element Analysis package. The proposed machine has high thrust force and cost-effectiveness compared to conventional dual permanent magnet motor. Finally, this paper also develops an analytical model for the proposed structure, validated by comparing it with Finite Element Analysis simulation results. Results show good agreement between analytical prediction and Finite Element Analysis results.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tao Fu ◽  
Yang Liu ◽  
Zhixin Zhu

Damage to bridge structures caused by vessel collision is a risk for bridges crossing water traffic routes. Therefore, safety around vessel collision of existing and planned bridges is one of the key technical problems that must be solved by engineering technicians and bridge managers. In the evaluation of the reliability of the bridge structure, the two aspects of vessel-bridge collision force and structural resistance need to be considered. As there are many influencing parameters, the performance function is difficult to express by explicit function. This paper combines the moment method theory of structural reliability with finite element analysis and proposes a statistical moment method based on finite element analysis for the calculation of vessel-bridge collision reliability, which solves the structural reliability problem with a nonlinear implicit performance function. According to the probability model based on current velocity, vessel velocity, and vessel collision tonnage, the estimate points in the standard normal space are converted into estimate points in the original state space through the Rosenblatt reverse transform. According to the estimate points in the original state space and the simplified dynamic load model of vessel-bridge collision, the sample time-history curve of random vessel-bridge collision force is generated, the dynamic response of the bridge structure and the structural resistance of the bridge are calculated by establishing a finite element model, and the failure probability and reliability index of the bridge structure is calculated according to the fourth-moment method. The statistical moment based on the finite element analysis is based on the finite element analysis and the moment method theory of structural reliability. The statistical moment of the limited performance function is calculated through a quite small amount of confirmatory finite element analysis, and the structural reliability index and failure probability are obtained. The method can be widely used in existing finite element analysis programs, greatly reducing the number of finite element analyses needed and improving the efficiency of structural reliability analysis.


2016 ◽  
Vol 78 (9) ◽  
Author(s):  
Izzati Yusri ◽  
Mariam Md Ghazaly ◽  
Esmail Ali Ali Alandoli ◽  
Mohd Fua'ad Rahmat ◽  
Zulkeflee Abdullah ◽  
...  

This paper addresses a rotary motion type of electromagnetic actuator that compares two types of electromagnetic actuators; i.e the Permanent Magnet Switching Flux (PMSF) and the Switching Reluctance (SR) actuator. The Permanent Magnet Switching Flux (PMSF) actuator is the combination of permanent magnets (PM) and the Switching Reluctance (SR) actuator. The force optimizations are accomplished by manipulating the actuator parameters; i.e. (i) the poles ratio of the stator and rotor; (ii) the actuator’s size; (iii) the number of winding turns; and (iv) the air gap thickness between the stator and rotor through Finite Element Analysis Method (FEM) using the ANSYS Maxwell 3D software. The materials implemented in the actuator’s parameters optimizations are readily available materials, especially in Malaysia. The excitation current used in FEM analysis for both actuators was between 0A and 2A with interval of 0.25A. Based on the FEM analyses, the best result was achieved by the Permanent Magnet Switching Flux (PMSF) actuator. The PMSF actuator produced the largest magnetostatic thrust force (4.36kN) once the size is scaled up to 100% with the input current, 2A respectively. The maximum thrust force generated by the Switching Reluctance (SR) actuator was 168.85μN, which is significantly lower in compared to the results of the PMSF actuator. 


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5162
Author(s):  
Jordi Garcia-Amorós ◽  
Marc Marín-Genescà ◽  
Pere Andrada ◽  
Eusebi Martínez-Piera

In this paper, a novel two-phase linear hybrid reluctance actuator with the double-sided segmented stator, made of laminated U cores, and an interior mover with permanent magnets is proposed. The permanent magnets are disposed of in a way that increases the thrust force of a double-sided linear switched reluctance actuator of the same size. To achieve this objective, each phase of the actuator is powered by a single H-bridge inverter. To reduce the detent force, the upper and the lower stator were shifted. Finite element analysis was used to demonstrate that the proposed actuator has a high force density with low detent force. In addition, a comparative study between the proposed linear hybrid reluctance actuator, linear switched reluctance, and linear permanent magnet actuators of the same size was performed. Finally, experimental tests carried out in a prototype confirmed the goals of the proposed actuator.


2012 ◽  
Vol 48 (2) ◽  
pp. 1031-1034 ◽  
Author(s):  
P. Zhou ◽  
D. Lin ◽  
Y. Xiao ◽  
N. Lambert ◽  
M. A. Rahman

2010 ◽  
Vol 670 ◽  
pp. 235-242 ◽  
Author(s):  
Y.W. Zhu ◽  
D.S. Kim ◽  
D.H. Kooa ◽  
Y.H. Cho

This paper investigates an optimal design of a double-sided slotted iron core type permanent magnet linear synchronous motor (PMLSM) using for ropeless elevator system. To obtain the optimal structure, the combination of response surface methodology (RSM) and two dimensional (2D) finite element analysis (FEA), which can solve the problem effectively without much time consuming, is utilized to investigate the PMLSM characteristics. Moreover, the detent force is more detailed analyzed with the manufacturing consideration. In final some numerical calculation results are reported to validate the applicability of this double-sided slotted iron core type PMLSM in ropeless elevator system. Introduction


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jesica Anguiano-Sanchez ◽  
Oscar Martinez-Romero ◽  
Hector R. Siller ◽  
Jose A. Diaz-Elizondo ◽  
Eduardo Flores-Villalba ◽  
...  

Stress shielding is a well-known failure factor in hip implants. This work proposes a design concept for hip implants, using a combination of metallic stem with a polymer coating (polyether ether ketone (PEEK)). The proposed design concept is simulated using titanium alloy stems and PEEK coatings with thicknesses varying from 100 to 400 μm. The Finite Element analysis of the cancellous bone surrounding the implant shows promising results. The effective von Mises stress increases between 81 and 92% for the complete volume of cancellous bone. When focusing on the proximal zone of the implant, the increased stress transmission to the cancellous bone reaches between 47 and 60%. This increment in load transferred to the bone can influence mineral bone loss due to stress shielding, minimizing such effect, and thus prolonging implant lifespan.


2013 ◽  
Vol 479-480 ◽  
pp. 230-233
Author(s):  
Yi Chang Wu ◽  
Bo Syuan Jian

This paper presents finite-element analysis (FEA) of the magnetic field of a magnetic gear mechanism. An external type magnetic gear mechanism, which consists of two identical magnetic gears with sector-shaped permanent magnets, is introduced first. Then, the magnetostatic field distribution and transmitted torque of the magnetic gear mechanism are simulated by a commercial FEA package Ansoft/ Maxwell. Next, the effects of design parameters, including the air-gap length, the number of magnetic pole pairs, and the height of permanent magnets, on the maximum transmitted torque are discussed. The results of this work are beneficial to the design of magnetic gear mechanisms.


2011 ◽  
Vol 179-180 ◽  
pp. 1303-1308
Author(s):  
Guang Hui Wang

In terms of various applications of linear motor, there are different design objectives with varying concerns. In this paper, the objective is to obtain the slot/pole ratio for tubular permanent-magnet linear synchronous motor (TPMLSM). Direct-axis current analysis and finite element technique are utilized to investigate the optimal slot/slot ratio design of the TPMLSM. Based on electrical angle drift of slots between two neighboring permanent magnets, the slot/pole ratio (SPR), one of the key factors in design, is deduced by direct-axis current analysis. In contrast to those experiment methods, the proposed technique is convenient and swift; moreover it is proven that the method is efficient by 2-D axisymmetic finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document