salinosporamide a
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 9)

H-INDEX

29
(FIVE YEARS 1)

Author(s):  
Abdul Hameed ◽  
Mariya Al-Rashida ◽  
Muhammad Raza Shah
Keyword(s):  

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5031
Author(s):  
Hyun-Su Lee ◽  
Gil-Saeng Jeong

The appropriate regulation of T cell activity under inflammatory conditions is crucial for maintaining immune homeostasis. Salinosporamide A discovered as a self-resistance product from the marine bacterium Salinospora tropica, has been used as a potent proteasome inhibitor (PI). Although PIs have been developed as novel therapeutics for autoimmune diseases, due to their immunosuppressive effect, whether salinosporamide A inhibits T cell activation remains unknown. The current study finds that salinosporamide A is not cytotoxic, but controls T cell proliferation. Results from our cell cycle arrest analysis revealed that salinosporamide A leads to cell cycle arrest and regulates the expression of cyclin-dependent kinases. Under activated conditions, salinosporamide A abrogated T cell activation by T cell receptor-mediated stimulation, in which the production of cytokines was inhibited by pretreatment with salinosporamide A. Furthermore, we demonstrated that the regulation of T cell activation by salinosporamide A is mediated by suppressing the MAPK pathway. Therefore, our results suggest that salinosporamide A effectively suppresses T cell activation through regulating T cell proliferation and the cell cycle and provides great insight into the development of novel therapeutics for autoimmune diseases or graft-versus-host disease.


2019 ◽  
Vol 58 (30) ◽  
pp. 10376-10376
Author(s):  
Hadi Gholami ◽  
Aman Kulshrestha ◽  
Olivia K. Favor ◽  
Richard J. Staples ◽  
Babak Borhan

2019 ◽  
Vol 58 (30) ◽  
pp. 10110-10113 ◽  
Author(s):  
Hadi Gholami ◽  
Aman Kulshrestha ◽  
Olivia K. Favor ◽  
Richard J. Staples ◽  
Babak Borhan

2019 ◽  
Vol 131 (30) ◽  
pp. 10484-10484
Author(s):  
Hadi Gholami ◽  
Aman Kulshrestha ◽  
Olivia K. Favor ◽  
Richard J. Staples ◽  
Babak Borhan

2019 ◽  
Vol 131 (30) ◽  
pp. 10216-10219
Author(s):  
Hadi Gholami ◽  
Aman Kulshrestha ◽  
Olivia K. Favor ◽  
Richard J. Staples ◽  
Babak Borhan

Marine Drugs ◽  
2018 ◽  
Vol 16 (7) ◽  
pp. 240 ◽  
Author(s):  
Michael Groll ◽  
Henry Nguyen ◽  
Sreekumar Vellalath ◽  
Daniel Romo

Upon acylation of the proteasome by the β-lactone inhibitor salinosporamide A (SalA), tetrahydrofuran formation occurs by intramolecular alkylation of the incipient alkoxide onto the choroethyl sidechain and irreversibly blocks the active site. Our previously described synthetic approach to SalA, utilizing a bioinspired, late-stage, aldol-β-lactonization strategy to construct the bicyclic β-lactone core, enabled synthesis of (–)-homosalinosporamide A (homoSalA). This homolog was targeted to determine whether an intramolecular tetrahydropyran is formed in a similar manner to SalA. Herein, we report the X-ray structure of the yeast 20S proteasome:homoSalA-complex which reveals that tetrahydropyran ring formation does not occur despite comparable potency at the chymotrypsin-like active site in a luminogenic enzyme assay. Thus, the natural product derivative homoSalA blocks the proteasome by a covalent reversible mode of action, opening the door for further fine-tuning of proteasome inhibition.


Sign in / Sign up

Export Citation Format

Share Document