compound rayleigh distribution
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2018 ◽  
Vol 15 (2) ◽  
pp. 711-718 ◽  
Author(s):  
M. M. Badr

This article considers estimation of the unknown parameters for the compound Rayleigh distribution (CRD) based on upper record values. We have derived the maximum likelihood (ML) and Bayesian estimators for the unknown two parameters, as well as the reliability and hazard functions. We obtained Bayes estimators on the basis of the symmetric (squared error) and asymmetric (linear exponential (LINEX) and general entropy (GE)) loss functions. It has been seen that the symmetric and asymmetric Bayes estimators are obtained in closed forms. Furthermore, Bayesian prediction interval of the future upper record values are discussed and obtained. Finally, estimation of the parameters, practical examples of real record values and simulated record values are given to illustrate the theoretical results of prediction interval.


Author(s):  
Hesham Reyad ◽  
Soha Ibrahim

In this paper, we introduce a new four parameter continuous model, called the beta compound Rayleigh (BCR) distribution that extends the compound Rayleigh distribution. Basic properties of the proposed distribution such as; mean, variance, coefficient of variation, raw and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics are investigated. We obtain the maximum likelihood estimates and the observed information matrix for the model parameters. Two real data sets are used to illustrate the usefulness of the new model.


2017 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Hesham Reyad ◽  
Soha A. Othman ◽  
Adil M Younis ◽  
Ahmed M. Hashish

We introduce a new four parameter continuous model, called the Kumaraswamy compound Rayleigh (KwCR) distribution that extends the compound Rayleigh distribution. We study some mathematical properties of this distribution such as; mean, variance, coefficient of variation, quantile function, median, ordinary and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics. We consider the methods of moments and maximum likelihood for estimating the model parameters.


Sign in / Sign up

Export Citation Format

Share Document