scholarly journals The Kumaraswamy compound Rayleigh distribution : properties and estimation

2017 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Hesham Reyad ◽  
Soha A. Othman ◽  
Adil M Younis ◽  
Ahmed M. Hashish

We introduce a new four parameter continuous model, called the Kumaraswamy compound Rayleigh (KwCR) distribution that extends the compound Rayleigh distribution. We study some mathematical properties of this distribution such as; mean, variance, coefficient of variation, quantile function, median, ordinary and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics. We consider the methods of moments and maximum likelihood for estimating the model parameters.

Author(s):  
Hesham Reyad ◽  
Soha Ibrahim

In this paper, we introduce a new four parameter continuous model, called the beta compound Rayleigh (BCR) distribution that extends the compound Rayleigh distribution. Basic properties of the proposed distribution such as; mean, variance, coefficient of variation, raw and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics are investigated. We obtain the maximum likelihood estimates and the observed information matrix for the model parameters. Two real data sets are used to illustrate the usefulness of the new model.


2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


Author(s):  
Hesham Reyad ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
Nagla Yahia

We propose a new four parameters continuous model called the Topp Leone generalized inverted Kumaraswamy distribution which extends the generalized inverted Kumaraswamy distribution. Basic mathematical properties of the new distribution are invstigated such as; quantile function, raw and incomplete moments, generating functions, probability weighted moments, order statistics, Rényi entropy, stochastic ordering and stress strength model. The method of maximum likelihood is used to estimate the model parameters of the new distribution. A Monte Carlo simulation is conducted to examine the behavior of the parameter estimates. The applicability of the new model is demonstrated by means of two real applications.


Author(s):  
Aladesuyi Alademomi ◽  
Philips Samuel Ademola ◽  
Adefolarin Adekunle David

This paper introduces a new three parameter Rayleigh distribution which generalizes the Rayleigh distribution. The new model is referred to as Extended Rayleigh (ER) distribution. Various mathematical properties of the new model including ordinary and incomplete moment, quantile function, generating function are derived. We propose the method of maximum likelihood for estimating the model parameters. A real life data set is used to compare the flexibility of the new model with other models.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Maha A. Aldahlan

In this paper, a new three-parameter lifetime distribution is introduced; the new model is a generalization of the log-logistic (LL) model, and it is called the alpha power transformed log-logistic (APTLL) distribution. The APTLL distribution is more flexible than some generalizations of log-logistic distribution. We derived some mathematical properties including moments, moment-generating function, quantile function, Rényi entropy, and order statistics of the new model. The model parameters are estimated using maximum likelihood method of estimation. The simulation study is performed to investigate the effectiveness of the estimates. Finally, we used one real-life dataset to show the flexibility of the APTLL distribution.


2019 ◽  
Vol 15 (4) ◽  
pp. 849
Author(s):  
Hesham Reyad‎ ◽  
Mahmoud Ali Selim ◽  
Soha Othman

Based on the Nadarajah Haghighi distribution and the Topp Leone-G family in view of the T-X family, we introduce a new generator of continuous distributions with three extra parameters called the Nadarajah Haghighi Topp Leone-G family. Three sub-models of the new class are discussed. Main mathematical properties of the new family are investigated such as; quantile function, raw and incomplete moments, Bonferroni and Lorenz curves, moment and probability generating functions, stress-strength model, Shanon and Rényi entropies, order statistics and probability weighted moments. The model parameters of the new family is estimated by using the method of maximum likelihood and the observed information matrix is also obtained. We introduce two real applications to show the importance of the new family.


Author(s):  
Ehsan Ullah ◽  
Mirza Shahzad

In this study, transmuted two parameters Rayleigh distribution is proposed using quadratic rank transmutation map. This proposed distribution is more flexible and versatile than two parameters Rayleigh distribution. Some properties of the proposed distribution are derived such as moments, moment generating function, mean, variance, median, quantile function, reliability, and hazard function. The parameter estimation is approached through the method of least square estimation. The th and joint order statistics are also derived for the proposed distribution. The application of proposed model illustrated and compared using real data.


2020 ◽  
Vol XVII (2) ◽  
pp. 1-14
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Syed Muhammad Akbar Ali Shah

This paper presents the details of a proposed continuous model for the minimum Gumbel Burr distribution which is based on four different parameters. The model is obtained by compounding the Gumbel type-II and Burr-XII distributions. Basic mathematical properties of the new distribution were studied including the quantile function, ordinary and incomplete moments, moment generating function, order statistics, Rényi entropy, stress-strength model and stochastic ordering. The parameters of the proposed distribution are estimated using the maximum likelihood method. A Monte Carlo simulation was presented to examine the behaviour of the parameter estimates. The flexibility of the proposed model was assessed by means of three applications.


Author(s):  
Haitham Yousof ◽  
Muhammad Mansoor ◽  
Morad Alizadeh ◽  
Ahmed Afify ◽  
Indranil Ghosh

We study a new family of distributions defined by the minimum of the Poissonrandom number of independent identically distributed random variables having a general Weibull-G distribution (see Bourguignon et al. (2014)). Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum likelihood estimation of the model parameters is investigated. Three special models of the new family are discussed. We perform three applications to real data sets to show the potentiality of theproposed family.


2017 ◽  
Vol 11 (2) ◽  
pp. 434-450 ◽  
Author(s):  
Tibor Pogány ◽  
Gauss Cordeiro ◽  
Muhammad Tahir ◽  
Hari Srivastava

In 2000 Chen introduced a two-parameter lifetime model and has reported only a few mathematical properties moments, quantile and generating functions, among others. In this article, we derive a power series expansion for newly introduced real upper parameter generalized integro-exponential function Eps(z) extending certain Milgram's findings. By our novel results we derive closed-form expressions for the moments, generating function, R?nyi entropy and power series for the quantile function of the Chen distribution.


Sign in / Sign up

Export Citation Format

Share Document