transient oscillations
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 9)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 150 (4) ◽  
pp. A174-A174
Author(s):  
Scott H. Hawley ◽  
Andrew C. Morrison

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7284
Author(s):  
Pavlo Krot ◽  
Volodymyr Korennoi ◽  
Radoslaw Zimroz

The problem solved in this research is the diagnosis of the radial clearances in bearing supports and the loosening of fastening bolts due to their plastic elongation (creep) or weak tightening using vibration signals. This is an important issue for the maintenance of the heavy-duty gearboxes of powerful mining machines and rolling mills working in non-stationary regimes. Based on a comprehensive overview of bolted joint diagnostic methods, a solution to this problem based on a developed nonlinear dynamical model of bearing supports is proposed. Diagnostic rules are developed by comparing the changes of natural frequency and its harmonics, the amplitudes and phases of shaft transient oscillations. Then, the vibration signals are measured on real gearboxes while the torque is increasing in the transmission during several series of industrial trials under changing bearings and bolts conditions. In parallel, dynamical torque is measured and its interrelation with vibration is determined. It is concluded that the radial clearances are the most influencing factors among the failure parameters in heavy-duty gearboxes of industrial machines working under impulsive and step-like loading. The developed diagnostics algorithm allows condition monitoring of bearings and fastening bolts, allowing one to undertake timely maintenance actions to prevent failures.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yunliang Zang ◽  
Sungho Hong ◽  
Erik De Schutter

Both spike rate and timing can transmit information in the brain. Phase response curves (PRCs) quantify how a neuron transforms input to output by spike timing. PRCs exhibit strong firing-rate adaptation, but its mechanism and relevance for network output are poorly understood. Using our Purkinje cell (PC) model, we demonstrate that the rate adaptation is caused by rate-dependent subthreshold membrane potentials efficiently regulating the activation of Na+ channels. Then, we use a realistic PC network model to examine how rate-dependent responses synchronize spikes in the scenario of reciprocal inhibition-caused high-frequency oscillations. The changes in PRC cause oscillations and spike correlations only at high firing rates. The causal role of the PRC is confirmed using a simpler coupled oscillator network model. This mechanism enables transient oscillations between fast-spiking neurons that thereby form PC assemblies. Our work demonstrates that rate adaptation of PRCs can spatio-temporally organize the PC input to cerebellar nuclei.


2019 ◽  
Vol 124 (11) ◽  
pp. 9058-9074 ◽  
Author(s):  
O. Kozyreva ◽  
V. Pilipenko ◽  
D. Lorentzen ◽  
L. Baddeley ◽  
M. Hartinger

2019 ◽  
Author(s):  
Yunliang Zang ◽  
Sungho Hong ◽  
Erik De Schutter

AbstractBoth spike rate and timing can transmit information in the brain. Phase response curves (PRCs) quantify how a neuron transforms input to output by spike timing. They exhibit strong firing-rate adaptation, but its mechanism and relevance for network output are poorly understood. Using our Purkinje cell (PC) model we demonstrate that the rate adaptation is caused by rate-dependent subthreshold membrane potentials efficiently regulating the activation of Na+ channels. Then we use a realistic PC network model to examine how rate-dependent responses synchronize spikes in the scenario of reciprocal inhibition-caused high-frequency oscillations. The changes in PRC cause oscillations and spike correlations only at high firing rates. The causal role of the PRC is confirmed using a simpler coupled oscillator network model. This mechanism enables transient oscillations between fast-spiking neurons that thereby form PC assemblies. Our work demonstrates that rate adaptation of PRCs can spatio-temporally organize the PC input to cerebellar nuclei.


2019 ◽  
Vol 9 (4) ◽  
pp. 755 ◽  
Author(s):  
Lin Liang ◽  
Lei Shan ◽  
Fei Liu ◽  
Ben Niu ◽  
Guanghua Xu

Periodic impulses and the oscillation response signal are the vital feature indicators of rolling bearing faults. However, finding the suitable feature frequency band is usually difficult due to the interferences of other components and multiple resonance regions. According to the characteristics of non-negative matrix factorization (NMF) on a spectrogram, the feature extraction method from a sparse envelope spectrum for rolling bearing faults is proposed in this paper. On the basis of the time–frequency distribution (TFD) of the periodic transient oscillations, the basic matrix can be interpreted as the spectral bases, and the time weight matrix corresponding to spectral bases can be extracted by NMF. Because the bases and the weights have a one-to-one correspondence, the frequency band filtering with the basic component and the time domain envelope of the weight vector are calculated respectively. Then, the sparse envelope spectrum can be derived by the inner product of the above results. The effectiveness of the proposed method is verified by simulations and experiments. Compared with band-pass filtering and spectral kurtosis methods, and considering the time weights and corresponding the spectral bases for the periodic transient oscillations, the weak fault-rated feature can be enhanced in the sparse spectrum, while other components and noise are weakened. Therefore, the proposed method can reduce the requirement of selecting frequency band filtering.


2018 ◽  
Author(s):  
Hayriye Cagnan ◽  
Mallet Nicolas ◽  
Christian K.E. Moll ◽  
Alessandro Gulberti ◽  
Manfred Westphal ◽  
...  

AbstractPrevalence and temporal dynamics of transient oscillations in the beta frequency band (15-35 Hz), referred to as beta bursts, are correlated with motor performance and tactile perception. Disturbance of these activities is a candidate mechanism for motor impairment in Parkinson’s disease (PD), where the excessively long bursts correlate with symptom severity and are reduced by pharmacological and surgical treatments. To date, characterization of beta bursts in PD has been limited to the local field potentials in the subthalamic nucleus (STN) and cortical EEG. Here, we describe the changes that take place in spiking activity across the cortico-basal ganglia circuit, providing a unique insight into the network dynamics of these transient oscillations. Firstly, we demonstrate that rhythmic subthalamic spiking activity emerges at a fixed phase relationship with respect to cortical beta bursts in PD patients. Using multichannel recordings of ensembles of neurons in the 6-OHDA rat model of PD, we then dissect the beta burst dynamics across the sensorimotor cortex and several basal ganglia structures: striatum (Str), globus pallidus externus (GPe) and STN. Each subcortical structure exhibits enhanced rhythmic activity in the beta band locked to the onset of cortical beta bursts and longer cortical bursts lead to stronger subcortical rhythmicity. Crucially, enhanced subcortical rhythmic activity emerges at a fixed phase relationship with respect to the motor cortex, comparable to the relationship observed in PD patients. Striatal beta bursts terminate prior to the recruitment of those in the STN and GPe, suggesting that while they could play an important role in establishing synchrony in the beta band, they do not extensively contribute to its maintenance in other basal ganglia structures. Critically, changes in cortico-subcortical phase coupling precede the onset of a cortical beta burst, supporting the hypothesis that phase alignment across the cortico-basal ganglia network could recruit these structures into synchronous network oscillations. We provide a powerful approach that not only examines pathophysiology of PD across the motor circuit, but also offer insights that could aid in the design of novel neuromodulation strategies to manipulate the state of the motor system before pathological activities emerge.


Sign in / Sign up

Export Citation Format

Share Document