large vibration amplitude
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 673
Author(s):  
Yaxiang Zeng ◽  
Remco Sanders ◽  
Remco J. Wiegerink ◽  
Joost C. Lötters

A micro-Coriolis mass flow sensor is a resonating device that measures small mass flows of fluid. A large vibration amplitude is desired as the Coriolis forces due to mass flow and, accordingly, the signal-to-noise ratio, are directly proportional to the vibration amplitude. Therefore, it is important to maximize the quality factor Q so that a large vibration amplitude can be achieved without requiring high actuation voltages and high power consumption. This paper presents an investigation of the Q factor of different devices in different resonant modes. Q factors were measured both at atmospheric pressure and in vacuum. The measurement results are compared with theoretical predictions. In the atmospheric environment, the Q factor increases when the resonance frequency increases. When reducing the pressure from 1 to 0.1 , the Q factor almost doubles. At even lower pressures, the Q factor is inversely proportional to the pressure until intrinsic effects start to dominate, resulting in a maximum Q factor of approximately 7200.


2021 ◽  
Vol 221 (1) ◽  
pp. 73-87
Author(s):  
Yung Ting ◽  
Amelia Sugondo ◽  
Chih-Hsuan Yu ◽  
Yun-Jui Yang ◽  
Yen-Lung Lee

2019 ◽  
Vol 950 ◽  
pp. 195-199
Author(s):  
Boonsong Chongkolnee ◽  
Chaiya Praneetpongrung

This research aim to improve the machining properties of the EDM for cemented carbide. The new methods were designed and proposed to use the ultrasonic vibration technique. Two types of USEDM systems were produced. One had a low frequency of 29 kHz with a large vibration amplitude, while the other had a high frequency of 59 kHz with a small amplitude. The Cu-W tool electrode was synchronized with the devised vibration system, and several discharge generation conditions were carried out on the cemented carbide material. The results showed that the highest machining efficiencies were obtained from the ultrasonic low frequency of 29 kHz with a large vibration amplitude. The MRR, TWR and surface roughness of the ultrasonic low frequency with the large vibration amplitude were better than the high frequency system with the small amplitude system. It was clarified that the ultrasonic vibration with the large amplitude could assist the material removal behavior of the discharge.


2017 ◽  
Vol 29 (5) ◽  
pp. 911-918
Author(s):  
Katsushi Furutani ◽  
◽  
Hisashi Kamiishi

This paper deals with a percussive rock surface crusher driven with a solenoid to smoothen the sample surface by a 2-axis planar motion. The weathered rock surface should be removed and smoothened before analyzing its structure and composition precisely. The solenoid, which generates a large vibration amplitude and a large impulsive force, was used to vibrate a tool bit with engineered 1-mm pyramids made of tungsten carbide. The tool bit was fixed parallel to the feed direction or with a skew. A rock sample was moved by a stage with movable ranges for the machining of 10 mm and 20 mm in the x- and y-directions, respectively. The sample paths were randomly generated in 1 or 2 directions. In the comparisons of the surface roughness, the 2-axis motion and tool skew not only allowed isotropic and small roughness but also the removal of more amount due to the removed debris. The roughness reached several tens of micrometers without a certain special frequency component. This level allows for component analysis by X-ray fluorescence or laser-induced breakdown spectrometer.


Sign in / Sign up

Export Citation Format

Share Document