scholarly journals Percussive Rock Surface Remover Driven by Solenoid with Planer Motion for Lunar Exploration

2017 ◽  
Vol 29 (5) ◽  
pp. 911-918
Author(s):  
Katsushi Furutani ◽  
◽  
Hisashi Kamiishi

This paper deals with a percussive rock surface crusher driven with a solenoid to smoothen the sample surface by a 2-axis planar motion. The weathered rock surface should be removed and smoothened before analyzing its structure and composition precisely. The solenoid, which generates a large vibration amplitude and a large impulsive force, was used to vibrate a tool bit with engineered 1-mm pyramids made of tungsten carbide. The tool bit was fixed parallel to the feed direction or with a skew. A rock sample was moved by a stage with movable ranges for the machining of 10 mm and 20 mm in the x- and y-directions, respectively. The sample paths were randomly generated in 1 or 2 directions. In the comparisons of the surface roughness, the 2-axis motion and tool skew not only allowed isotropic and small roughness but also the removal of more amount due to the removed debris. The roughness reached several tens of micrometers without a certain special frequency component. This level allows for component analysis by X-ray fluorescence or laser-induced breakdown spectrometer.

Author(s):  
Evelien Rost ◽  
Christoph Hecker ◽  
Martin C. Schodlok ◽  
Freek D. van der Meer

High-resolution laboratory-based thermal infrared spectroscopy is an up-and-coming tool in the field of geological remote sensing. Its spatial resolution allows for detailed analyses at centimeter to sub-millimeter scale. However, this increase in resolution creates challenges with sample characteristics such as grain size, surface roughness and porosity that can influence the spectral signature. This research explores the effect of rock sample surface preparation on the TIR spectral signatures. We applied three surface preparation methods (split, saw and polish) to determine how the resulting differences in surface roughness affects both the spectral shape as well as the spectral contrast. The selected samples are a pure quartz sandstone, a quartz sandstone containing a small percentage of kaolinite, and an intermediate-grained gabbro. To avoid instrument or measurement type biases we conducted measurements on three TIR instruments, resulting in directional hemispherical reflectance spectra, emissivity spectra and bi-directional reflectance images. Surface imaging and analyses were performed with scanning electron microscopy and profilometer measurements. We demonstrate that surface preparation affects the TIR spectral signatures influencing both the spectral contrast as well as the spectral shape. The results show that polished surfaces predominantly display a high spectral contrast while the sawed and split surfaces display up to 25% lower reflectance values. Furthermore, the sawed and split surfaces display spectral signature shape differences at specific wavelengths, which we link to mineral transmission features, surface orientation effects and multiple reflections in fine-grained minerals. Hence, the influence of rock surface preparation should be taken in consideration to avoid an inaccurate geological interpretation.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 475 ◽  
Author(s):  
Evelien Rost ◽  
Christoph Hecker ◽  
Martin Schodlok ◽  
Freek van der Meer

High-resolution laboratory-based thermal infrared spectroscopy is an up-and-coming tool in the field of geological remote sensing. Its spatial resolution allows for detailed analyses at centimeter to sub-millimeter scales. However, this increase in resolution creates challenges with sample characteristics, such as grain size, surface roughness, and porosity, which can influence the spectral signature. This research explores the effect of rock sample surface preparation on the thermal infrared spectral signatures. We applied three surface preparation methods (split, saw, and polish) to determine how the resulting differences in surface roughness affects both the spectral shape as well as the spectral contrast. The selected samples are a pure quartz sandstone, a quartz sandstone containing a small percentage of kaolinite, and an intermediate-grained gabbro. To avoid instrument or measurement type biases we conducted measurements on three TIR instruments, resulting in directional hemispherical reflectance spectra, emissivity spectra and bi-directional reflectance images. Surface imaging and analyses were performed with scanning electron microscopy and profilometer measurements. We demonstrate that surface preparation affects the TIR spectral signatures influencing both the spectral contrast, as well as the spectral shape. The results show that polished surfaces predominantly display a high spectral contrast while the sawed and split surfaces display up to 25% lower reflectance values. Furthermore, the sawed and split surfaces display spectral signature shape differences at specific wavelengths, which we link to mineral transmission features, surface orientation effects, and multiple reflections in fine-grained minerals. Hence, the influence of rock surface preparation should be taken in consideration to avoid an inaccurate geological interpretation.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


1992 ◽  
Vol 46 (9) ◽  
pp. 1382-1387 ◽  
Author(s):  
J. A. Aguilera ◽  
C. Aragón ◽  
J. Campos

Laser-induced breakdown spectroscopy has been used to determine carbon content in steel. The plasma was formed by focusing a Nd:YAG laser on the sample surface. With the use of time-resolved spectroscopy and generation of the plasma in nitrogen atmosphere, a precision of 1.6% and a detection limit of 65 ppm have been obtained. These values are similar to those of other accurate conventional techniques. Matrix effects for the studied steels are reduced to a small slope difference between the calibration curves for stainless and nonstainless steels.


1994 ◽  
Vol 375 ◽  
Author(s):  
Z. H. Ming ◽  
Y. L. Soo ◽  
S. Huang ◽  
Y. H. Kao ◽  
K. Stair ◽  
...  

AbstractInterfacial microstructures in 100-period InxGa1−xAs(15Å)/GaAs(100Å) superlattices grown on GaAs (100) substrates by molecular beam epitaxy were studied by using large angle x-ray scattering techniques. Unusual satellite peaks in the lateral direction parallel to the sample surface were observed in a sample with x = 0.535 grown at 480°C, indicating an in-plane structural ordering. This result is confirmed by high resolution transmission electron microscopy observations that thickness modulation in the InxGa1−xAs layers gives rise to long-range lateral periodic arrays of cluster-like microstructures with spacing on the order of a few hundred Ångstroms. This thickness modulation is found to occur only in [110] direction, thus the material can be viewed as a somewhat disordered array of grown-in parallel quantum wires.


2020 ◽  
Vol 82 (11) ◽  
pp. 2415-2424
Author(s):  
S. Mokhtari ◽  
N. Dokhan ◽  
S. Omeiri ◽  
B. Berkane ◽  
M. Trari

Abstract The hematite (α-Fe2O3) nanostructures were synthesized by thermal oxidation of metal at 500 °C under atmospheric pressure. We studied the effect of the electrochemical pretreatment of the substrate before calcinations and its impact on the morphology, crystalline structure, lattice microstructural, and optical properties of α-Fe2O3. Uniform nanosheets were observed on the sample surface after calcination; their dimension and morphology were accentuated by the pretreatment, as confirmed by the SEM images. The characteristics of the nanostructures, analyzed by X-ray diffraction (XRD), revealed a rhombohedral symmetry with the space group R-3c and lattice constants: a = 0.5034 nm and c = 1.375 nm. The average crystallite size and strain, determined from the Williamson-Hall (W-H) plot, showed substantial variations after the substrate pretreatment. The Raman spectroscopy confirmed the changes in the crystal properties of the hematite submitted to pretreatment. The diffuse reflectance allowed to evaluate the optical gap which lies between 1.2 and 1.97 eV, induced by the electrochemical processing. The photocatalytic activity of α-Fe2O3 films was assessed by the degradation of methylene blue (MB) under LED light; 15% enhancement of the degradation for the pretreated specimens was noticed.


2018 ◽  
Vol 133 ◽  
pp. 121-132 ◽  
Author(s):  
Anderson Alvarenga de Moura Meneses ◽  
Dayara Bastos Palheta ◽  
Christiano Jorge Gomes Pinheiro ◽  
Regina Cely Rodrigues Barroso

Author(s):  
Kazutaka G. Nakamura ◽  
Yoichiro Hironaka ◽  
Akio Yazaki ◽  
Fumikazu Saito ◽  
Ken-ichi Kondo

2021 ◽  
Author(s):  
Dursun Acar ◽  
Namık Çagatay ◽  
Ş. Can Genç ◽  
K. Kadir Eriş ◽  
Demet Biltekin ◽  
...  

<p>Surface fractures at the filament of X-ray tube increase more with metal fatique or wrong cooling  and heating processes. Fractured filament continue to work as repeating open circuit positions in random times with  turning fully conductive state in short time. We are explaining how open circuit flashes at the filament providing wrong measurement results. Their low voltage electric circuit conductive problems  repeat in milliseconds periods. At  the results, it gives the impression of healthy measurement values. Because that the measured sample absorbs photonic energy and direct it to neighbouring elements in continuous element  electron scattering  circulations , by the way that delayed secondary electron energy scatters hide all electron supply extinctions on the semi broken flament wire and indirect counts  continue by the detector from coming reflection energy. ( real counts are not from exact beam  target of sample surface during energy deprivations , and it is impossible to understand that the measurement is inaccurate because it causes similarity as discrete element counts in sedimentation layers ).  Filament voltage arcs do not warn machine with error reporting systems until to whole ruptured filament touch to anode walls or their far displaced edges of 2 broken filament positioning. Erroneous records take their place in the world of science if the lithology was not followed. We collected faulty measurement data from our experiences for indicate when and  how possible to facing such as events.</p><p>For eliminate  explained reasons at above , the tubes must be gently heated and  cooled. Excessive cooling or heating of the tubes or oxid placement and leakeage  at gasget contacts reduces the surface contact areas of the insilators with the corrosion by  condensing water around the rubber insulation gasgets , it causes cooling liquid leakage or increasing humidity at the tube housing block via following serial failures of HV unit such as increasing amounts of the broken tube events. During the replacement of insulating gasgets, enough care should be taken for gasket contact points as oiling  them with  silicone grease as a form of the thin film. High responsibility must be with continuous  result control  and reference correlations on the scientific sample. With this way we can eliminate possible  negative results by malfunctions on measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document