northwest pacific anticyclone
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 8 ◽  
Author(s):  
Qian Ren ◽  
Shanshan Zhong ◽  
Dan Chen ◽  
Xiang Li ◽  
Tangtang Zhang

The interannual relationship between the spring sea surface temperature over the western tropical Indian Ocean (WTIO SST) and summer water vapor content over Tibetan Plateau (TPWVC) enhances significantly after 1992/1993. The regressed atmospheric circulation against WTIO SST index (WTIO SSTI) for two periods is explored to explain the interdecadal variation. During ID1 (1979–1991), the center of the anomalous anticyclone is generally located eastward and the weak easterly anomalies on its southern flank transport moisture from the western Pacific to Southeast China with no effects on TPWVC. In ID2 (1994–2017), the Northwest Pacific anticyclone, the anomalous easterlies, and the subtropical high at 500 hPa all move westward and enhance significantly; thus, it forms a westward moisture transport pathway delivering the water vapor from the western Pacific into Tibetan Plateau. A possible mechanism is raised. On the one hand, the SST anomalies (SSTA) related to WTIO SSTI extend eastward from spring to summer in ID2. With the increased mean SST in the Indo-western Pacific Ocean under the global warming and the stronger mean summer SST in the eastern Indian Ocean, the positive SSTA induce the enhanced Kelvin waves and Northwest Pacific anticyclone with strong easterly anomalies during ID2. But in ID1, the SSTA related to WTIO SST confined in the western-central Indian Ocean from spring to summer excite the decreased Kelvin waves with less significant easterly anomalies due to the weaker mean SST. On the other hand, the eastward shift of tropical summer SSTA generates the increased convection and rising motion over the Southeast Indian Ocean in ID2. They enhance the easterly anomalies on the southern flank of the Northwest Pacific anticyclone and induce anticyclonic shear through the meridional circulation. As a result, the easterly anomalies shift westward to transport more moisture into Tibetan Plateau. However, in ID1, the easterly anomalies of the anticyclone cannot be strengthened with no westward shift. Therefore, the above reasons lead to the interdecadal enhancement of relationship between the spring WTIO SST and summer TPWVC.


2018 ◽  
Vol 31 (9) ◽  
pp. 3539-3555 ◽  
Author(s):  
Wenping Jiang ◽  
Gang Huang ◽  
Ping Huang ◽  
Kaiming Hu

The northwest Pacific anticyclone (NWPAC) anomalies during post–El Niño summers are a key predictor of the summer climate in East Asia and the northwestern Pacific (NWP). Understanding how this will change under global warming is crucial to project the changes in the variability of the northwest Pacific summer monsoon. Outputs from 18 selected coupled models from phase 5 of the Coupled Model Intercomparison Project show that the anomalous NWPAC response to El Niño will likely be weakened under global warming, which is attributed to the decreased zonal contrast between the tropical Indian Ocean (TIO) warming and the NWP cooling during post–El Niño summers. Under global warming, the NWPAC anomalies during the El Niño mature winter are weakened because of decreased atmospheric circulation in response to El Niño–Southern Oscillation (ENSO), which leads to the weakening of local air–sea interaction and then decreases the cold NWP SST anomalies. Furthermore, the decreased surface heat flux anomalies, the weakened anticyclone anomalies over the southeastern Indian Ocean, and the slackened anomalous easterlies over the north Indian Ocean weaken the warm TIO SST anomalies. However, the strengthened tropospheric temperature anomalies could enhance the anomalous TIO warming. Although the changes in TIO SST anomalies are indistinctive, the weakening of the SST anomaly gradient between the TIO and the NWP is robust to weaken the NWPAC anomalies during post–El Niño summers. Moreover, the positive feedback between the TIO–NWP SST anomalies and the NWPAC anomalies will enhance the weakening of NWPAC under global warming.


2016 ◽  
Vol 29 (12) ◽  
pp. 4695-4706 ◽  
Author(s):  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Axel Timmermann ◽  
Shayne McGregor

Abstract In this reply, the authors clarify the points made in the original paper in 2015 and show that issues raised in the comment by Li et al. are unsubstantiated. The main conclusions can be summarized as follows: 1) The time evolution of the anomalous low-level northwest Pacific anticyclone (NWP-AC) is largely caused by combination mode (C-mode) dynamics. 2) The theoretical C-mode index accurately captures the rapid development of the anomalous NWP-AC. 3) Thermodynamic air–sea coupling does not play a major role for the rapid phase transition of the NWP-AC and the meridionally antisymmetric atmospheric circulation response during the peak phase of El Niño events in boreal winter.


2015 ◽  
Vol 28 (3) ◽  
pp. 1093-1111 ◽  
Author(s):  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Axel Timmermann ◽  
Shayne McGregor

Abstract Nonlinear interactions between ENSO and the western Pacific warm pool annual cycle generate an atmospheric combination mode (C-mode) of wind variability. The authors demonstrate that C-mode dynamics are responsible for the development of an anomalous low-level northwest Pacific anticyclone (NWP-AC) during El Niño events. The NWP-AC is embedded in a large-scale meridionally antisymmetric Indo-Pacific atmospheric circulation response and has been shown to exhibit large impacts on precipitation in Asia. In contrast to previous studies, the authors find the role of air–sea coupling in the Indian Ocean and northwestern Pacific only of secondary importance for the NWP-AC genesis. Moreover, the NWP-AC is clearly marked in the frequency domain with near-annual combination tones, which have been overlooked in previous Indo-Pacific climate studies. Furthermore, the authors hypothesize a positive feedback loop involving the anomalous low-level NWP-AC through El Niño and C-mode interactions: the development of the NWP-AC as a result of the C-mode acts to rapidly terminate El Niño events. The subsequent phase shift from retreating El Niño conditions toward a developing La Niña phase terminates the low-level cyclonic circulation response in the central Pacific and thus indirectly enhances the NWP-AC and allows it to persist until boreal summer. Anomalous local circulation features in the Indo-Pacific (e.g., the NWP-AC) can be considered a superposition of the quasi-symmetric linear ENSO response and the meridionally antisymmetric annual cycle modulated ENSO response (C-mode). The authors emphasize that it is not adequate to assess ENSO impacts by considering only interannual time scales. C-mode dynamics are an essential (extended) part of ENSO and result in a wide range of deterministic high-frequency variability.


Sign in / Sign up

Export Citation Format

Share Document