summer monsoon region
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 2)

MAUSAM ◽  
2021 ◽  
Vol 70 (4) ◽  
pp. 691-708
Author(s):  
U. C. MOHANTY ◽  
H. P. NAYAK ◽  
P. SINHA ◽  
K. K. OSURI ◽  
D. NIYOGI

CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105462
Author(s):  
Jiqing Yin ◽  
Wenxiang Zhang ◽  
Tiantian Liu ◽  
Shunrong Ma ◽  
Qiushi Liang ◽  
...  

2021 ◽  
Author(s):  
Toru Terao ◽  
Fumie Murata ◽  
Yusuke Yamane ◽  
Masashi Kiguchi ◽  
Azusa Fukushima ◽  
...  

<p>The Asian summer monsoon system is the strongest monsoon circulation on the Earth. A huge reversal of meridional temperature gradient develops over the area covering the hemispheric region due to strong diabatic heating associated with convective activities. Vigorous conventions reach the upper troposphere providing a great amount of high potential temperature airmass. This high potential temperature air mass originates from the high equivalent potential temperature airmass accumulated in the lower troposphere over the Asian monsoon region. The highest potential temperature tropospheric air mass is observed only over the Asian summer monsoon region. To get a total view of the Asian summer monsoon circulation system, we focused on the mass budget of the upper-tropospheric air mass with a potential temperature between 355K to 370K. The non-conservative change of the air mass corresponds with the diabatic heating due to the convective activities, and the diabatic cooling due to the radiative process. To analyze the radiative cooling process that takes place in the upper troposphere, we utilized hourly GSMaP pixel values to detect rain-free pixels of the ERA5 dataset. We calculated the non-conservative air mass tendency over the rain-free pixels on a daily and 0.5 degrees spatio-temporal scale. We found the radiative equilibrium amount of high potential temperature air mass and the Newtonian cooling process with a relaxation time scale of 6 to 7 days. We will show the quantitative estimates of the total convective process of the Asian summer monsoon system associated with the convective clouds and radiative processes, through the mass budget of 355K-370K potential temperature air mass. We will further show results of the evaluation of the accuracy of TRMM and GPM products using our high-resolution tipping bucket raingauge network distributed over the Northeastern Indian subcontinent.</p>


2021 ◽  
Vol 14 (2) ◽  
pp. 1007-1035
Author(s):  
Gill M. Martin ◽  
Richard C. Levine ◽  
José M. Rodriguez ◽  
Michael Vellinga

Abstract. Despite the importance of monsoon rainfall to over half of the world's population, many climate models of the current generation struggle to capture some of the major features of the various monsoon systems. Studies of the development of errors in several tropical regions have shown that they start to develop very quickly, within the first few days of a model simulation, and can then persist to climate timescales. Understanding the sources of such errors requires the combination of various modelling techniques and sensitivity experiments of varying complexity. Here, we demonstrate how such analysis can shed light on the way in which monsoon errors develop, their local and remote drivers and feedbacks. We make use of the seamless modelling approach adopted by the Met Office, whereby different applications of the Met Office Unified Model (MetUM) use essentially the same model configuration (dynamical core and physical parameterisations) across a range of spatial and temporal scales. Using the Asian summer monsoon (ASM) as an example, we show that error patterns in circulation and rainfall over the ASM region in the MetUM are similar between multidecadal climate simulations and seasonal hindcasts initialised in spring. Analysis of the development of these errors on both short-range and seasonal timescales following model initialisation suggests that both the Maritime Continent and the oceans around the Philippines play a role in the development of East Asian summer monsoon errors, with the Indian summer monsoon region providing an additional contribution, while the errors over the Indian summer monsoon region itself appear to arise locally. Regional modelling with various lateral boundary locations helps to separate local and remote contributions to the errors, while regional relaxation experiments shed light on the influence of errors developing within particular areas on the region as a whole.


Sign in / Sign up

Export Citation Format

Share Document