Investigating quasi-resonant Rossby waves with an idealized general circulation model

Author(s):  
Todd Mooring ◽  
Marianna Linz

<p>Petoukhov et al.’s (2013, PNAS) hypothesis of quasi-resonant Rossby waves as a mechanism for destructive weather extremes—both heat- and rain-related, observed and projected—has received a great deal of attention in recent years.  Most notably, it has been used for diagnostic studies of reanalysis products and full-physics atmospheric or coupled general circulation models. However, studies of this sort essentially assume (rather than test) the validity of the underlying theory.</p><p>Since the quasi-resonance theoretical arguments do not explicitly involve the full complexity of atmospheric physics, it ought to be possible to test them within the much simpler framework of an idealized general circulation model. By carefully constructing the forcing fields for such a model, we will achieve control of its zonal mean state and thus the waveguide properties of the zonal jet. We will explore the properties of the quasi-stationary Rossby waves in such simulations to test whether they have the properties predicted by Petoukhov et al. By testing this dynamical mechanism in a simplified model, we can better understand its applicability and limitations for investigations of future climate.</p>

2010 ◽  
Vol 67 (6) ◽  
pp. 1983-1995 ◽  
Author(s):  
Steven C. Hardiman ◽  
David G. Andrews ◽  
Andy A. White ◽  
Neal Butchart ◽  
Ian Edmond

Abstract Transformed Eulerian mean (TEM) equations and Eliassen–Palm (EP) flux diagnostics are presented for the general nonhydrostatic, fully compressible, deep atmosphere formulation of the primitive equations in spherical geometric coordinates. The TEM equations are applied to a general circulation model (GCM) based on these general primitive equations. It is demonstrated that a naive application in this model of the widely used approximations to the EP diagnostics, valid for the hydrostatic primitive equations using log-pressure as a vertical coordinate and presented, for example, by Andrews et al. in 1987 can lead to misleading features in these diagnostics. These features can be of the same order of magnitude as the diagnostics themselves throughout the winter stratosphere. Similar conclusions are found to hold for “downward control” calculations. The reasons are traced to the change of vertical coordinate from geometric height to log-pressure. Implications for the modeling community, including comparison of model output with that from reanalysis products available only on pressure surfaces, are discussed.


2019 ◽  
Vol 77 (1) ◽  
pp. 149-165 ◽  
Author(s):  
Yixiong Lu ◽  
Tongwen Wu ◽  
Weihua Jie ◽  
Adam A. Scaife ◽  
Martin B. Andrews ◽  
...  

Abstract It is well known that the stratospheric quasi-biennial oscillation (QBO) is forced by equatorial waves with different horizontal/vertical scales, including Kelvin waves, mixed Rossby–gravity (MRG) waves, inertial gravity waves (GWs), and mesoscale GWs, but the relative contribution of each wave is currently not very clear. Proper representation of these waves is critical to the simulation of the QBO in general circulation models (GCMs). In this study, the vertical resolution in the Beijing Climate Center Atmospheric General Circulation Model (BCC-AGCM) is increased to better represent large-scale waves, and a mesoscale GW parameterization scheme, which is coupled to the convective sources, is implemented to provide unresolved wave forcing of the QBO. Results show that BCC-AGCM can spontaneously generate the QBO with realistic periods, amplitudes, and asymmetric features between westerly and easterly phases. There are significant spatiotemporal variations of parameterized convective GWs, largely contributing to a great degree of variability in the simulated QBO. In the eastward wind shear of the QBO at 20 hPa, forcing provided by resolved waves is 0.1–0.2 m s−1 day−1 and forcing provided by parameterized GWs is ~0.15 m s−1 day−1. On the other hand, westward forcings by resolved waves and parameterized GWs are ~0.1 and 0.4–0.5 m s−1 day−1, respectively. It is inferred that the eastward forcing of the QBO is provided by both Kelvin waves and mesoscale convective GWs, whereas the westward forcing is largely provided by mesoscale GWs. MRG waves barely contribute to the formation of the QBO in the model.


1990 ◽  
Vol 2 (4) ◽  
pp. 287-300 ◽  
Author(s):  
Ian Simmonds

Increasingly, many aspects of the study of Antarctica and the high southern latitudes are being aided by various types of numerical models. Among these are the General Circulation Models (GCMs), which are powerful tools that can be used to understand the maintenance of present atmospheric climate and determine its sensitivity to imposed changes. The changes in the ability of GCMs used over the last two decades to simulate aspects of atmospheric climate at high southern latitudes are traced and it is concluded there has been a steady improvement in model products. The task of assessing model climates in high southern latitudes is made difficult by the uncertainties in the data used for the climatological statistics. It is suggested that the quality of the climates produced by most modern GCMs in many aspects cannot be said to be poor, especially considering the uncertainties in ‘observed’ climate. There is obviously need for improvements in both modelling and observations. Finally, some topics are highlighted in which the formulation of models could be improved, with special reference to better treatment of physical processes at high southern latitudes.


2011 ◽  
Vol 4 (1) ◽  
pp. 457-495 ◽  
Author(s):  
A. Pozzer ◽  
P. Jöckel ◽  
B. Kern ◽  
H. Haak

Abstract. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is coupled to the ocean general circulation model MPIOM using the Modular Earth Submodel Sytem (MESSy) interface. MPIOM is operated as a MESSy submodel, thus the need of an external coupler is avoided. The coupling method is tested for different model configurations, proving to be very flexible in terms of parallel decomposition and very well load balanced. The run time performance analysis and the simulation results are compared to those of the COSMOS (Community earth System MOdelS) climate model, using the same configurations for the atmosphere and the ocean in both model systems. It is shown that our coupling method is, for the tested conditions, approximately 10% more efficient compared to the coupling based on the OASIS (Ocean Atmosphere Sea Ice Soil, version 3) coupler. The standard (CMIP3) climate model simulations performed with EMAC-MPIOM show that the results are comparable to those of other Atmosphere-Ocean General Circulation models.


2011 ◽  
Vol 8 (3) ◽  
pp. 1441-1466 ◽  
Author(s):  
H. Dietze ◽  
I. Kriest

Abstract. In the aftermath of an earthquake and tsunami on 11 March 2011 considerable amounts of radioactive materials were accidentally released into the sea off Fukushima-Daiichi, Japan. This study uses a three-dimensional eddy-resolving oceanic general circulation model to explore potential pathways of a tracer, similar to 137Cs, from the coast to the open ocean. Results indicate that enhanced concentrations meet a receding spring bloom offshore and that the area of enhanced concentrations offshore is strongly determined by surface mixed layer dynamics. However, huge uncertainties remain. Among them are the realism of the simulated cross-shelf transport and apparently inconsistent estimates of the particle reactivity of 137Cs which are discussed in a brief literature review. We argue that a comprehensive set of 137Cs measurements, including sites offshore, could be a unique opportunity to both evaluate and advance the evaluation of oceanic general circulation models.


2013 ◽  
Vol 71 (1) ◽  
pp. 177-194 ◽  
Author(s):  
Elizabeth A. Barnes ◽  
David W. J. Thompson

Abstract Do barotropic or baroclinic eddy feedbacks dominate the atmospheric circulation response to mechanical forcing? To address this question, barotropic torques are imposed over a range of latitudes in both an idealized general circulation model (GCM) and a barotropic model. The GCM includes both baroclinic and barotropic feedbacks. The barotropic model is run in two configurations: 1) only barotropic feedbacks are present and 2) a baroclinic-like feedback is added by allowing the stirring region to move with the jet. The relationship between the latitude of the forcing and the response is examined by systematically shifting the torques between the tropics and the pole. The importance of the mean state is investigated by varying the position of the control jet. Five main findings are presented: 1) Barotropic feedbacks alone are capable of producing the structure of the GCM response to mechanical forcing but are not capable of accounting for its full magnitude. 2) Baroclinic processes generally increase the magnitude of the response but do not strongly influence its structure. 3) For a given forcing, the largest response in all model configurations occurs 5°–10° poleward of the forcing latitude. 4) The maximum response occurs when the forcing is located approximately 10° poleward of the control jet. 5) The circulation response weakens as the mean jet is found at higher latitudes in all model configurations.


2021 ◽  
pp. 1-58
Author(s):  
Jiye Wu ◽  
Yue Li ◽  
Jing-Jia Luo ◽  
Xianan Jiang

AbstractThe Madden-Julian Oscillation (MJO) provides an important source of sub-seasonal to seasonal (S2S) predictability. Improved MJO prediction can be beneficial to S2S prediction of global climate and associated weather extremes. In this study, hindcasts based on an atmosphere-ocean coupled general circulation model (CGCM) are compared to those based on atmosphere general circulation models (AGCMs) to investigate influences of air-sea interactions on MJO prediction. Our results suggest that MJO prediction skill can be extended about one week longer in the CGCM hindcasts than AGCM-only experiments, particularly for boreal winter predictions.Further analysis suggests that improved MJO prediction in the CGCM is closely associated with improved representation of moistening processes. Compared to the AGCM experiments, the CGCM better predicts the boundary-layer moisture preconditioning to the east of MJO convection, which is generally considered crucial for triggering MJO deep convection. Meanwhile, the widely extended east-west asymmetric structure in free-tropospheric moisture tendency anomalies relative to the MJO convection center as seen in the observations is also well predicted in the CGCM. Improved prediction of MJO moisture processes in CGCM is closely associated with better representation of the zonal scale of MJO circulation and stronger Kelvin waves to the east of MJO convection, both of which have been recently suggested conductive for MJO eastward propagation. The above improvements by including air-sea coupling could be largely attributed to the realistic MJO-induced SST fluctuations through the convection-SST feedback. This study confirms a critical role of atmosphere-ocean coupling for the improvement of MJO prediction.


2005 ◽  
Vol 18 (17) ◽  
pp. 3527-3535 ◽  
Author(s):  
C. A. Severijns ◽  
W. Hazeleger

Abstract An efficient method to optimize the parameter values of the subgrid parameterizations of an atmospheric general circulation model is described. The method is based on the downhill simplex minimization of a cost function computed from the difference between simulated and observed fields. It is used to find optimal values of the radiation and cloud-related parameters. The model error is reduced significantly within a limited number of iterations (about 250) of short integrations (5 yr). The method appears to be robust and finds the global minimum of the cost function. The radiation budget of the model improves considerably without violating the already well simulated general circulation. Different aspects of the general circulation, such as the Hadley and Walker cells improve, although they are not incorporated into the cost function. It is concluded that the method can be used to efficiently determine optimal parameters for general circulation models even when the model behavior has a strong nonlinear dependence on these parameters.


Sign in / Sign up

Export Citation Format

Share Document