scholarly journals Investigation of a full-size damper for an electrically driven centrifugal pump for oil production

Author(s):  
S. G. Zubairov ◽  
◽  
R. R. Yakhin ◽  
A. N Zotov ◽  
T. I. Salikhov ◽  
...  

The article describes a way to combat fatigue effects in the details of connecting modules of an electric driven centrifugal pump unit for oil production. A constructive solution for implementing the method in relation to complex downhole conditions in the form of a multifunctional damper using a differential piston to transfer it from the transport position when lowering into the well into the working one is shown. For a full-size damper, experimental studies of its vibration- isolating characteristics have been carried out when used in the form of substrates for supporting arms of elastomers of various densities and compositions. The preferred characteristics of elastomers and their ranking for various frequencies of forced vibrations are determined. Keywords: module, connection parts; electrically driven centrifugal pump unit; electrocentrifugal pumping unit; differential piston; damper; sbstrate; vibration velocity.

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (9) ◽  
pp. 571-578
Author(s):  
Beyali Ahmedov ◽  
◽  
Anar Hajiyev ◽  
Vugar Mustafayev ◽  
◽  
...  

The article presents the results of experimental studies to assess the loading and balancing of a new constructive solution of beamless sucker-rod pumping units. It is noted that the key factor that has the most significant effect on the mean time between failures (MTBF) is the right balancing of the pumping unit. The main purpose of the balancing device is the accumulation of potential energy during the downstroke and its release during the upstroke of the rod. It has been proved that the proposed additional balancing system (movable counterweight) which helps to reduce the uneven load on the electric motor and the power consumption of the pumping unit will also increase the efficiency of the beamless sucker-rod pumping unit. It was found that losses in sucker-rod pumps depend on the degree of balance of the counterweights. If the unbalance coefficient of the equipment is in the range from –5 to +5%, then the power loss due to unbalance can be ignored. In the current article, the authors propose a technique that allows to determine the energy characteristics of the electric drive of the pumping unit under conditions of a cyclically changing load and insufficient balance. It was revealed that when the balancer head passes from the upstroke to the downstroke and vice versa, there are sections with a negative value of the torque, which is explained by the influence of the inertial forces of the moving masses. This leads to shocks in the gearing of the reducer at the extreme positions of the cranks, increased wear and possibly to breakage of the teeth. Since it is not possible to completely eliminate this phenomenon, one should strive to limit the value of the negative torque by the correct balancing of the sucker-rod pump. In all cases, the change in the operating mode of a new constructive solution of beamless pumping unit requires new calculations, and requires changing the position and weights of movable and rotary counterweights (with combined balancing).


Author(s):  
I. I. Yaremak

According to the research results, the target functions of the task of optimizing the functioning of the units according to the criteria of the regime reliability, depending on the flow of the working fluid were synthesized, which made it possible to research the influence of the regime on the reliability of operation of electric and hydraulic subsystems of the pump unit. The extreme weight of local target functions of regime reliability of electric motor and the centrifugal pump in various (especially low-flow rate) operating modes are determined. It is proposed to optimize the operating modes of  pumping units of oil pumping station with the simultaneous use of the reliability criteria of electric drive and centrifugal pump. . It was established that the maximum values of reliability of electric drive and centrifugal pump are achieved at different values of the load, which requires the involvement of multi-criteria optimization methods. The problem of optimization of the established modes of the pump unit in the multicriteria setting, taking into account the technological limitations of its subsystems was formalized. The analysis of modern methods of solving the problem of multicriteria optimization of the steady modes of operation of pump units is carried out. The method of solving the multicriterion optimization problem is substantiated, which fully takes into account the influence of operation mode on the reliability of electric and hydraulic subsystems of pumping unit. It is revealed that the most appropriate method for solving this problem is the method of approaching an ideal (utopian) point in the criteria space. With this method, the desired ratio of criteria at the optimum point is the best. The value of the "agreed optimum" of liquid flow has been determined in order to choose the optimum for the reliability of operation mode of the pumping unit of oil pumping station.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199811
Author(s):  
Wu Xianfang ◽  
Du Xinlai ◽  
Tan Minggao ◽  
Liu Houlin

The wear-ring abrasion can cause performance degradation of the marine centrifugal pump. In order to study the effect of front and back wear-ring clearance on a pump, test and numerical simulation were used to investigate the performance change of a pump. The test results show that the head and efficiency of pump decrease by 3.56% and 9.62% respectively at 1.0 Qd due to the wear-ring abrasion. Under 1.0 Qd, with the increase of the front wear-ring the vibration velocity at pump foot increases from 0.4 mm/s to 1.0 mm/s. The axis passing frequency (APF) at the measuring points increases significantly and there appears new characteristic frequency of 3APF and 4APF. The numerical simulation results show that the front wear-ring abrasion affects the flow at the inlet of the front chamber of the pump and impeller passage. And the back wear-ring abrasion has obvious effect on the flow in the back chamber of the pump and impeller passage, while the multi-malfunction of the front wear-ring abrasion and back wear-ring abrasion has the most obvious effect on the flow velocity and flow stability inside pump. The pressure pulsation at Blade Passing Frequency (BPF) of the three schemes all decrease with the increase of the clearance.


2020 ◽  
Vol 23 (2) ◽  
pp. 48-51
Author(s):  
V. KONDRATENKO ◽  
◽  
V. KALYNYCHENKO ◽  

Mine drainage systems, which are used at the main drainage of mining enterprises, have a drive capacity of up to 1600kW. To reduce non-productive energy losses, as well as for the continuous operation of the mining company, mine pumps must be energy efficient and reliable. Analysis of downtime of drainage systems shows that the weak point is the unloading device. This fact can lead not only to the failure of the pumping unit, but also to possible prolonged downtime of the mine. The main disadvantage of the existing disk unloading devices of mine pumps is their low reliability and low service life, due to the rapid wear of the components of the unloading unit. The most vulnerable elements of the unloading device are the unloading rings. The need for frequent replacement and adjustment of the elements of the discharge unit is associated with disassembly and assembly of the pump directly in the pump chamber. Such actions require significant costs of unproductive manual labor of service personnel, and rapid wear of parts of the unloading device necessitates their constant replenishment. Malfunctions in the unloading device can cause significant pump failures. To increase the reliability and energy efficiency of mine drainage systems, the method of control of the unloading device was used. During the experimental studies it was found that cavitation phenomena during the operation of pumping units are absent and, accordingly, can not be the cause of wear of the elements of the unloading unit. When the pumps are operating in steady state, the displacement of the rotors was monitored for 3-4 hours on each pump unit. After data processing, it was obtained that the wear of the surface of the unloading rings occurs at a rate of 0.05-0.15mm in one hour. To determine the wear of the rings of unloading during start-up - stop of the pump, at first the indicators of measuring devices at the established mode of operation of the pump unit were fixed. Then the pump was turned off and on again. After starting the pump unit, we made sure that the operating mode of the unloading device did not change and compared the readings of the shaft position indicator before stopping and after starting the pump. From the measurements made it followed that stopping and starting the pump does not lead to noticeable wear of the unloading device. Therefore, it can be assumed that mainly the wear of the discharge rings occurs during the steady operation of the pump unit.


2021 ◽  
Author(s):  
Baghir Alakbar Suleimanov ◽  
Sabina Jahangir Rzayeva ◽  
Ulviyya Tahir Akhmedova

Abstract Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-dicing agents along with significant amount of gases, mainly carbon dioxide. In early, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than non-gasified systems. The slippage effect determines the behavior of gas–liquid systems in the SR under reservoir conditions. Slippage occurs more easily when the pore channel has a smaller average radius. Therefore, in a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. The theoretical and practical foundations for the preparation of single-phase self-gasified biosystems and the implementation of the SR under reservoir conditions have been developedSR under reservoir conditions. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


2015 ◽  
pp. 29-33
Author(s):  
V. A. Kopyrin ◽  
V. A. Iordan ◽  
O. V. Smirnov

The authors provide a method for compensation of the reactive power inside a well. In the environment Matlab/ Simylink a model was developed of the site of the electrical centrifugal pump unit power supply from the transformer substation. A comparison is made of the proposed method of downhole reactive power compensation with the existing method.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ling Bai ◽  
Ling Zhou ◽  
Xiaoping Jiang ◽  
Qinglong Pang ◽  
Daoxing Ye

Multistage pumps are intended to improve designs with low-vibration and -noise features as the industry applications increase the technical requirements. In this frame, it becomes really important to fully understand the vibration patterns of these kinds of complex machines. In this study, a vibration test bench was established to examine the vibration and stability of a cantilever multistage centrifugal pump under different flow rates. The vibration spectrum diagrams for the inlet and outlet sections and the pump body were evaluated under varied flow conditions. Results showed the effects of operational conditions on the vibration of the cantilever multistage centrifugal pump. Vibration velocity was primarily caused by mass unbalance at the shut-off flow rate point. Under different flow conditions, the blade passing frequency (BPF) and two times the blade passing frequency (2BPF) were the main excitation frequencies. The vibration frequency of the final pump body remained at the BPF under different flow conditions due to the contact with the outlet section. The major type of vibration frequency for the inlet and outlet was high frequency.


2019 ◽  
Vol 39 (2) ◽  
pp. 382-392
Author(s):  
Houlin Liu ◽  
Qijiang Ma ◽  
Yu Li ◽  
Kai Wang

In order to study the influence of floating raft isolation system (FRIS) on the vibration characteristics of marine pump, a marine centrifugal pump with/without FRIS under the same operation condition, which specific speed is 66.7, was experimentally measured. The maximum efficiency of the pump is 75.8%, which is under 1.2 Qd. Results show that the characteristic frequencies in the vibration spectrums of the pump with/without FRIS are APF (axial passing frequency), the BPF (blade passing frequency) and its high-order harmonic frequency. After installing FRIS, under 0.8 Qd, 1.0 Qd and 1.2 Qd, the vibration intensity of the pump at inlet flange is slighter than that at pump base and larger than that at pump bracket. The vibration intensity at outlet flange is slighter than that at the pump bracket and larger than that at pump body, and the vibration intensity at connecting plate is the lowest. The vibration velocity level of pump base decreases with the increase of flow rate, the maximum vibration intensity at M1–M4 is reduced by 88% than that without FRIS, and the maximum vibration velocity of the APF at M1–M4 is reduced by 83.3% than that without FRIS.


Sign in / Sign up

Export Citation Format

Share Document