burst synchronization
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 19 (2) ◽  
pp. 1877-1890
Author(s):  
Zhen Wang ◽  
◽  
Ramesh Ramamoorthy ◽  
Xiaojian Xi ◽  
Hamidreza Namazi ◽  
...  

<abstract> <p>There is some evidence representing the sequential formation and elimination of electrical and chemical synapses in particular brain regions. Relying on this feature, this paper presents a purely mathematical modeling study on the synchronization among neurons connected by transient electrical synapses transformed to chemical synapses over time. This deletion and development of synapses are considered consecutive. The results represent that the transient synapses lead to burst synchronization of the neurons while the neurons are resting when both synapses exist constantly. The period of the transitions and also the time of presence of electrical synapses to chemical ones are effective on the synchronization. The larger synchronization error is obtained by increasing the transition period and the time of chemical synapses' existence.</p> </abstract>


2018 ◽  
Vol 28 (12) ◽  
pp. 1850143 ◽  
Author(s):  
Xiaojuan Sun ◽  
Tianshu Xue

In this paper, we focus on investigating the effects of time delay on burst synchronization transitions of a neuronal network which is locally modeled by Hindmarsh–Rose neurons. Here, neurons inside the neuronal network are connected through electrical synapses or chemical synapses. With the numerical results, it is revealed that burst synchronization transitions of both electrically and chemically coupled neuronal networks could be induced by time delay just when the coupling strength is large enough. Meanwhile, it is found that, in electrically and excitatory chemically coupled neuronal networks, burst synchronization transitions are observed through change of spiking number per burst when coupling strength is large enough; while in inhibitory chemically coupled neuronal network, burst synchronization transitions are observed for large enough coupling strength through changing fold-Hopf bursting activity to fold-homoclinic bursting activity and vice versa. Namely, two types of burst synchronization transitions are observed. One type of burst synchronization transitions occurs through change of spiking numbers per burst and the other type of burst synchronization transition occurs through change of bursting types.


2018 ◽  
Author(s):  
Sang-Yoon Kim ◽  
Woochang Lim

We consider a scale-free network of inhibitory Hindmarsh-Rose (HR) bursting neurons, and investigate coupling-induced cluster burst synchronization by varying the average coupling strength J0. For sufficiently small J0, non-cluster desynchronized states exist. However, when passing a critical point , the whole population is segregated into 3 clusters via a constructive role of synaptic inhibition to stimulate dynamical clustering between individual burstings, and thus 3-cluster desynchronized states appear. As J0 is further increased and passes a lower threshold , a transition to 3-cluster burst synchronization occurs due to another constructive role of synaptic inhibition to favor population synchronization. In this case, HR neurons in each cluster exhibit burst synchronization. However, as J0 passes an intermediate threshold , HR neurons begin to make intermittent hoppings between the 3 clusters. Due to the intermittent intercluster hoppings, the 3 clusters are integrated into a single one. In spite of break-up of the 3 clusters, (non-cluster) burst synchronization persists in the whole population, which is well visualized in the raster plot of burst onset times where bursting stripes (composed of burst onset times and indicating burst synchronization) appear successively. With further increase in J0, intercluster hoppings are intensified, and bursting stripes also become smeared more and more due to a destructive role of synaptic inhibition to spoil the burst synchronization. Eventually, when passing a higher threshold a transition to desynchronization occurs via complete overlap between the bursting stripes. Finally, we also investigate the effects of stochastic noise on both 3-cluster burst synchronization and intercluster hoppings.


2018 ◽  
Author(s):  
Sang-Yoon Kim ◽  
Woochang Lim

We are concerned about burst synchronization (BS), related to neural information processes in health and disease, in the Barabasi-Albert scale-free network (SFN) composed of inhibitory bursting Hindmarsh-Rose neurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without considering iSTDP, BS was found to appear in a range of noise intensities for fixed synaptic inhibition strengths. In contrast, in our present work, we take into consideration iSTDP and investigate its effect on BS by varying the noise intensity. Our new main result is to find occurrence of a Matthew effect in inhibitory synaptic plasticity: good BS gets better via LTD, while bad BS get worse via LTP. This kind of Matthew effect in inhibitory synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better (worse) via LTP (LTD). We note that, due to inhibition, the roles of LTD and LTP in inhibitory synaptic plasticity are reversed in comparison with those in excitatory synaptic plasticity. Moreover, emergences of LTD and LTP of synaptic inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between the preand the post-synaptic burst onset times. Finally, in the presence of iSTDP we investigate the effects of network architecture on BS by varying the symmetric attachment degree l* and the asymmetry parameter Δl in the SFN.


2017 ◽  
Author(s):  
Joseph D. Monaco ◽  
Hugh T. Blair ◽  
Kechen Zhang

AbstractSpatial cells of the hippocampal formation are embedded in networks of theta cells. The septal theta rhythm (6–10 Hz) organizes the spatial activity of place and grid cells in time, but it remains unclear how spatial reference points organize the temporal activity of theta cells in space. We study spatial theta cells in simulations and single-unit recordings from exploring rats to ask whether temporal phase codes may anchor spatial representations to the outside world. We theorize that an experience-independent mechanism for temporal coding may combine with burst synchronization to continuously calibrate self-motion to allocentric reference frames. Subcortical recordings revealed spatial theta cells with strong rate-phase correlations related to distinct theta phases. Simulations of bursting neurons and networks explained that relationship and, with competitive learning, demonstrated flexible spatial synchronization patterns when driven by low-dimensional spatial components from the recording data. Thus temporal coding synchrony may reconcile extrinsic and intrinsic neural codes.


Sign in / Sign up

Export Citation Format

Share Document