cariogenic biofilm
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guilherme Roncari Rocha ◽  
Kenneth R. Sims ◽  
Baixue Xiao ◽  
Marlise I. Klein ◽  
Danielle S.W. Benoit

Author(s):  
Leonardo Lobo Ribeiro Cavalcante ◽  
Antonio Claudio Tedesco ◽  
Aline Evangelista Souza-Gabriel ◽  
Hiago Salge Borges ◽  
Fabiana Almeida Curylofo-Zotti ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259895
Author(s):  
Ye Han

The increased incidence of dental caries by cigarette smoking (CS) has been widely reported in epidemiological studies, but the relationship between CS and cariogenic biofilm growth has been rarely studied. This study aims to investigate the effects of CS exposure on the growth and virulence of Streptococcus mutans biofilms (S. mutans). Briefly, S. mutans biofilms were formed on saliva-coated hydroxyapatite disks, which were exposed to CS 1, 3, and 6 times per day, respectively. In addition, S. mutans biofilms without CS exposure were considered as the control group. Acidogenicity, dry weight, colony-forming units (CFUs), water-soluble/insoluble extracellular polysaccharides (EPSs), and intracellular polysaccharides (IPSs) were analyzed and confocal laser scanning microscopy (CLSM) images of 74-h-old S. mutans biofilms were obtained. The lowest accumulation of biofilms and EPSs were detected in the 6 times/day CS exposure group compared with those of the control group and other CS exposure groups in 74-h-old S. mutans biofilms. CLSM also revealed the lowest bacterial count (live and dead cells) and EPSs biovolume in the six times/day CS exposure group in 74-h-old S. mutans biofilms. CS exposure inhibited the growth of S. mutans biofilm in vitro study, the anti-cariogenic biofilm formation was enhanced with a dose (frequency)-dependent at which frequency has more influence in the present findings.


2021 ◽  
pp. 118882
Author(s):  
Tinnakorn Phuangkaew ◽  
Nadda Booranabunyat ◽  
Suda Kiatkamjornwong ◽  
Panida Thanyasrisung ◽  
Voravee P. Hoven

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ye Han

AbstractAlthough fluoride has been widely used as a preventive agent for dental caries, the effects of fluoride on the activities of biofilms in different stages of cariogenic biofilm formation are less studied. This study was designed to investigate the antibiofilm activity of sodium fluoride during the early and mature stages of Streptococcus mutans (S. mutans) biofilm formation. S. mutans biofilms were formed on saliva-coated hydroxyapatite disks. In the early (0–46 h) and mature (46–94 h) biofilm stages, the biofilms were treated with different concentrations of fluoride (250, 500, 1000, 2000 ppm; 5 times in total, 1 min/treatment). Acidogenicity, dry weight, colony-forming units (CFUs), water-soluble/insoluble extracellular polysaccharides (EPSs), and intracellular polysaccharides were analysed, and confocal laser scanning microscopy images were obtained of the two stages of biofilms to determine antibiofilm activities of fluoride at varying concentrations during the formation of early and mature biofilms. In the early stages of cariogenic biofilm formation, test groups with all fluoride concentrations significantly inhibited the growth of S. mutans biofilms. The antibiofilm and anti-EPS formation activities of the brief fluoride treatments increased with a concentration-dependent pattern. At the mature biofilm stage, only the 2000 ppm fluoride treatment group significantly inhibited biofilm accumulation, activity, and intracellular/extracellular polysaccharide content compared with those of the control and other fluoride treatment groups. The antimicrobial effect of fluoride treatment on the growth of S. mutans biofilms was linked with the stage of cariogenic biofilm formation. The inhibition of S. mutans biofilm growth by fluoride treatment was easier in the early formation stage than in the mature stage. Fluoride treatment in the early stage of cariogenic biofilm formation may be an effective approach to controlling cariogenic biofilm development and preventing dental caries.


2021 ◽  
Vol 9 (6) ◽  
pp. 1311
Author(s):  
Xiuqin Chen ◽  
Eric Banan-Mwine Daliri ◽  
Akanksha Tyagi ◽  
Deog-Hwan Oh

The initiation and development of cariogenic (that is, caries-related) biofilms are the result of the disruption of homeostasis in the oral microenvironment. There is a daily accumulation of dental biofilm on the surface of teeth and its matrix of extracellular polymers supports the host in its defense against invading microbes, thus helping to achieve oral microbial homeostasis. However, the homeostasis can be broken down under certain circumstances such as during long-term exposure to a low pH environment which results in the dominance of acidogenic and acid-tolerating species in the dental biofilm and, thus, triggers the shift of harmless biofilm to an acidic one. This work aims to explore microbial diversity and the quorum sensing of dental biofilm and their important contributions to oral health and disease. The complex and multispecies ecosystems of the cariogenic biofilm pose significant challenges for the modulation of the oral microenvironment. Promising treatment strategies are those that target cariogenic niches with high specificity without disrupting the balance of the surrounding oral microbiota. Here, we summarized the recent advances in modulating cariogenic biofilm and/or controlling its pathogenic traits.


2021 ◽  
Author(s):  
Ye Han

Abstract Although fluoride has been widely used in the prevention of dental caries, the effect of fluoride on the activity of biofilm in different stages of cariogenic biofilm formation is less studied. This study aimed to investigate the antibiofilm activity of sodium fluoride during early and mature Streptococcus mutans (S. mutans) biofilms formation. S. mutans biofilms were formed on saliva-coated hydroxyapatite disks. In the early (0 ~ 46 h) and mature (46 ~ 94 h) biofilm stages, the biofilm was treated with different concentrations of fluoride (250, 500, 1000, 2000 ppm; 5 times in total, 1 min/treatment). Acidogenicity, dry weight, colony-forming units, water-soluble/insoluble extracellular polysaccharides (EPS), and intracellular polysaccharides were analyzed and confocal laser scanning microscopy images were obtained of the two stages of biofilms (early and mature biofilms). To determine the antibiofilm activity of sodium fluoride during the formation of early and mature biofilms, and to evaluate the relationship between different concentrations of sodium fluoride and antibiofilm activity. In the early cariogenic biofilm formation stage, all fluoride concentration test groups (250, 500, 1000, 2000 ppm) significantly inhibited the growth of S. mutans biofilm. The antibiofilm and anti-EPS formation activities of the brief fluoride treatment increased in a concentration-dependent pattern. At the mature biofilm stage, only the 2000 ppm fluoride treatment group significantly inhibited biofilm accumulation, activity, and intracellular/extracellular polysaccharide content compared with the control and other fluoride treatment groups. The antimicrobial activity of fluoride is related to the formation stage of cariogenic biofilm. The early formation stage of cariogenic biofilm is more susceptible to the inhibition of fluorine than the mature stage. The fluoride treatment in the early formation stage of cariogenic biofilm may be an effective means to control the development of cariogenic biofilm and prevent caries.


Author(s):  
Camila de Carvalho Almança Lopes ◽  
Renata Borges Rodrigues ◽  
Maximiliano Sérgio Cenci ◽  
Juliana Lays Stolfo Uehara ◽  
Tamires Timm Maske ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document