scholarly journals Ring opening of 2-aza-3-borabicyclo[2.2.0]hex-5-ene, the Dewar form of 1,2-dihydro-1,2-azaborine: stepwise versus concerted mechanisms

2013 ◽  
Vol 9 ◽  
pp. 761-766 ◽  
Author(s):  
Holger F Bettinger ◽  
Otto Hauler

The ring opening of the Dewar form of 1,2-dihydro-1,2-azaborine, 2-aza-3-borabicyclo[2.2.0]hex-5-ene (3) is investigated by theoretical methods by using multiconfiguration SCF (CASSCF) and coupled cluster theory [CCSD(T)] with basis sets up to polarised quadruple-zeta quality. The title compound was previously reported to form photochemically in cryogenic noble gas matrices from 1,2-dihydro-1,2-azaborine (4). Four reaction paths for the thermal ring opening of 3 to 4 could be identified. These are the conventional disrotatory and conrotatory electrocyclic ring-opening pathways where the BN unit is only a bystander. Two more favourable paths are stepwise and involve 1,3-boron–carbon interactions. The lowest energy barrier for the isomerisation reaction, 22 kcal mol−1, should be high enough for an experimental observation in solution. However, in solution the dimerisation of 3 is computed to have a very low barrier (3 kcal mol−1), and thus 3 is expected to be a short-lived reactive intermediate.

2018 ◽  
Vol 17 (02) ◽  
pp. 1850016 ◽  
Author(s):  
Jiang Yi ◽  
Feiwu Chen

Applications of the multireference linearized coupled-cluster single-doubles (MRLCCSD) to atomic and molecular systems have been carried out. MRLCCSD is exploited to calculate the ground-state energies of HF, H2O, NH3, CH4, N2, BF, and C2with basis sets, cc-pVDZ, cc-pVTZ and cc-pVQZ. The equilibrium bond lengths and vibration frequencies of HF, HCl, Li2, LiH, LiF, LiBr, BH, and AlF are computed with MRLCCSD and compared with the experimental data. The electron affinities of F and CH as well as the proton affinities of H2O and NH3are also calculated with MRLCCSD. These results are compared with the results produced with second-order perturbation theory, linearized coupled-cluster doubles (LCCD), coupled-cluster doubles (CCD), coupled-cluster singles and doubles (CCSD), CCSD with perturbative triples correction (CCSD(T)). It is shown that all results obtained with MRLCCSD are reliable and accurate.


1997 ◽  
Vol 97 (1-4) ◽  
pp. 164-176 ◽  
Author(s):  
Wim Klopper ◽  
Jozef Noga ◽  
Henrik Koch ◽  
Trygve Helgaker

2018 ◽  
Vol 122 (28) ◽  
pp. 5962-5969 ◽  
Author(s):  
J. Coleman Howard ◽  
Shree Sowndarya S. V. ◽  
Imaad M. Ansari ◽  
Taylor J. Mach ◽  
Angelika Baranowska-Łączkowska ◽  
...  

2015 ◽  
Vol 17 (26) ◽  
pp. 16927-16936 ◽  
Author(s):  
Huyen Thi Nguyen ◽  
Minh Tho Nguyen

Thermally feasible decomposition pathways of formamide (FM) in the presence of vanadium VO(X4Σ−) and titanium TiO(X3Δ) monoxides are determined using density functional theory (the BP86 functional) and coupled-cluster theory (CCSD(T)) computations with large basis sets.


Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2017 ◽  
Author(s):  
Yuhong Liu ◽  
Anthony Dutoi

<div> <div>A shortcoming of presently available fragment-based methods is that electron correlation (if included) is described at the level of individual electrons, resulting in many redundant evaluations of the electronic relaxations associated with any given fluctuation. A generalized variant of coupled-cluster (CC) theory is described, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction is pre-computed and permanently folded into the effective Hamiltonian. This article provides a high-level description of the CC variant, establishing some useful notation, and it demonstrates the advantage of the proposed paradigm numerically on model systems. A companion article shows that the electronic Hamiltonian of real systems may always be cast in the form demanded. This framework opens a promising path to build finely tunable systematically improvable methods to capture precise properties of systems interacting with a large number of other systems. </div> </div>


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Wataru Mizukami ◽  
Kosuke Mitarai ◽  
Yuya O. Nakagawa ◽  
Takahiro Yamamoto ◽  
Tennin Yan ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2911
Author(s):  
Miriam Navarrete-Miguel ◽  
Antonio Francés-Monerris ◽  
Miguel A. Miranda ◽  
Virginie Lhiaubet-Vallet ◽  
Daniel Roca-Sanjuán

Photocycloreversion plays a central role in the study of the repair of DNA lesions, reverting them into the original pyrimidine nucleobases. Particularly, among the proposed mechanisms for the repair of DNA (6-4) photoproducts by photolyases, it has been suggested that it takes place through an intermediate characterized by a four-membered heterocyclic oxetane or azetidine ring, whose opening requires the reduction of the fused nucleobases. The specific role of this electron transfer step and its impact on the ring opening energetics remain to be understood. These processes are studied herein by means of quantum-chemical calculations on the two azetidine stereoisomers obtained from photocycloaddition between 6-azauracil and cyclohexene. First, we analyze the efficiency of the electron-transfer processes by computing the redox properties of the azetidine isomers as well as those of a series of aromatic photosensitizers acting as photoreductants and photo-oxidants. We find certain stereodifferentiation favoring oxidation of the cis-isomer, in agreement with previous experimental data. Second, we determine the reaction profiles of the ring-opening mechanism of the cationic, neutral, and anionic systems and assess their feasibility based on their energy barrier heights and the stability of the reactants and products. Results show that oxidation largely decreases the ring-opening energy barrier for both stereoisomers, even though the process is forecast as too slow to be competitive. Conversely, one-electron reduction dramatically facilitates the ring opening of the azetidine heterocycle. Considering the overall quantum-chemistry findings, N,N-dimethylaniline is proposed as an efficient photosensitizer to trigger the photoinduced cycloreversion of the DNA lesion model.


Sign in / Sign up

Export Citation Format

Share Document