lanthanide atoms
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 1)

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2707
Author(s):  
Zhi Xie ◽  
Limin Chen

Doping of foreign atoms may substantially alter the properties of the host materials, in particular low-dimension materials, leading to many potential functional applications. Here, we perform density functional theory calculations of two-dimensional InSe materials with substitutional doping of lanthanide atoms (Ce, Nd, Eu, Tm) and investigate systematically their structural, magnetic, electronic and optical properties. The calculated formation energy shows that the substitutional doping of these lanthanide atoms is feasible in the InSe monolayer, and such doping is more favorable under Se-rich than In-rich conditions. As for the structure, doping of lanthanide atoms induces visible outward movement of the lanthanide atom and its surrounding Se atoms. The calculated total magnetic moments are 0.973, 2.948, 7.528 and 1.945 μB for the Ce-, Nd-, Eu-, and Tm-doped systems, respectively, which are mainly derived from lanthanide atoms. Further band structure calculations reveal that the Ce-doped InSe monolayer has n-type conductivity, while the Nd-doped InSe monolayer has p-type conductivity. The Eu- and Tm-doped systems are found to be diluted magnetic semiconductors. The calculated optical response of absorption in the four doping cases shows redshift to lower energy within the infrared range compared with the host InSe monolayer. These findings suggest that doping of lanthanide atoms may open up a new way of manipulating functionalities of InSe materials for low-dimension optoelectronics and spintronics applications.


ACS Nano ◽  
2021 ◽  
Author(s):  
Aparajita Singha ◽  
Daria Sostina ◽  
Christoph Wolf ◽  
Safa L. Ahmed ◽  
Denis Krylov ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Dmitrij Rappoport

Property-optimized Gaussian basis sets of split-valence, triple-zeta and quadruple-zeta valence quality are developed for the lanthanides Ce–Lu for use with small-core relativistic effective core potentials. They are constructed in a systematic fashion by augmenting def2 orbital basis sets with diffuse basis functions and minimizing negative static isotropic polarizabilities of lanthanide atoms with respect to basis set exponents within the unrestricted Hartree–Fock method. The basis set quality is assessed using a test set of 70 molecules containing the lanthanides in their common oxidation states and f electron occupations. 5d orbital occupation turns out to be the determining factor for the basis set convergence of polarizabilities in lanthanide atoms and the molecular test set. Therefore, two series of property-optimized basis sets are defined. The augmented def2-SVPD, def2-TZVPPD, and def2-QZVPPD basis sets balance the accuracy of polarizabilities across lanthanide oxidation states. The relative errors in atomic and molecular polarizability calculations are ≤8% for augmented split-valence basis sets, ≤2.5% for augmented triple-zeta valence basis sets, and ≤1% for augmented quadruple-zeta valence basis sets. In addition, extended def2-TZVPPDD and def2-QZVPPDD are provided for accurate calculations of lanthanide atoms and neutral clusters. The property-optimized basis sets developed in this work are shown to accurately reproduce electronic absorption spectra of a series of LnCp'3- complexes (Cp' = C5H4SiMe3, Ln = Ce–Nd, Sm) with time-dependent density functional theory.


2020 ◽  
Author(s):  
Vasilii Dubrovin ◽  
Alexey Popov ◽  
Stanislav Avdoshenko

Detailed electronic structure of single atomic magnets is a crucial bit in the further understanding and design of a new generation of monoatomic magnetic elements on surfaces and in molecules. Control and manipulation of the single atomic state, as well as long relaxation of magnetization, have been demonstrated for lanthanide atoms on carefully chosen supporting substrates. However, these convincing experiments are puzzling by insufficient theoretical description, usually omitting the valence electrons of lanthanide atoms. In this work, starting with an idea of the inevitable need of local d- and p-shell electrons for a proper description of the magnetic states of lanthanide atoms, we rationalized the electronic structure and magnetic properties of Ho atom on the MgO substrate using ab initio multiconfigurational approaches. By doing so, we obtained the solution which complements experimental observations without any assumptions and has been able to pin-point the atomic state which most likely to be responsible for the exceptional magnetic properties of Ho on MgO. This study demonstrates that new paradigms are needed for understanding and interpretation of the lanthanide single-atomic magnets.


2020 ◽  
Author(s):  
Vasilii Dubrovin ◽  
Alexey Popov ◽  
Stanislav Avdoshenko

Detailed electronic structure of single atomic magnets is a crucial bit in the further understanding and design of a new generation of monoatomic magnetic elements on surfaces and in molecules. Control and manipulation of the single atomic state, as well as long relaxation of magnetization, have been demonstrated for lanthanide atoms on carefully chosen supporting substrates. However, these convincing experiments are puzzling by insufficient theoretical description, usually omitting the valence electrons of lanthanide atoms. In this work, starting with an idea of the inevitable need of local d- and p-shell electrons for a proper description of the magnetic states of lanthanide atoms, we rationalized the electronic structure and magnetic properties of Ho atom on the MgO substrate using ab initio multiconfigurational approaches. By doing so, we obtained the solution which complements experimental observations without any assumptions and has been able to pin-point the atomic state which most likely to be responsible for the exceptional magnetic properties of Ho on MgO. This study demonstrates that new paradigms are needed for understanding and interpretation of the lanthanide single-atomic magnets.


Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 18 ◽  
Author(s):  
Pascal Quinet ◽  
Patrick Palmeri

The main purpose of the Database on Rare Earths At Mons University (DREAM) is to provide the scientific community with updated spectroscopic parameters related to lanthanide atoms (Z = 57–71) in their lowest ionization stages. The radiative parameters (oscillator strengths and transitions probabilities) listed in the database have been obtained over the past 20 years by the Atomic Physics and Astrophysics group of Mons University, Belgium, thanks to a systematic and extensive use of the pseudo-relativistic Hartree-Fock (HFR) method modified for taking core-polarization and core-penetration effects into account. Most of these theoretical results have been validated by the good agreement obtained when comparing computed radiative lifetimes and accurate experimental values measured by the time-resolved laser-induced fluorescence technique. In the present paper, we report on the current status and developments of the database that gathers radiative parameters for more than 72,000 spectral lines in neutral, singly-, doubly-, and triply-ionized lanthanides.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Xiaoxi Fu ◽  
Yuzhu Lu ◽  
Rulin Tang ◽  
Chuangang Ning

2019 ◽  
Vol 9 (3) ◽  
pp. 166-217 ◽  
Author(s):  
Gangadharan A. Kumar

In this review, we discuss the rational design of a new class of lanthanide-doped organometallic nanostructured materials called `molecular minerals`. Molecular minerals are nanostructured materials with a ceramic core made from chalcogenide groups and other heavy metals. Part of the central core atoms is replaced by suitable lanthanide atoms to impart fluorescent spectral properties. The ceramic core is surrounded by various types of organic networks thus making the structure partly ceramic and organic. The central core has superior optical properties and the surrounding organic ligand makes it easy to dissolve several kinds of organic solvents and fluoropolymers to make several kinds of active and passive photonic devices. This chapter starts with elaborate design strategies of lanthanidebased near-infrared emitting materials followed by the experimental results of selected near-infrared emitting lanthanide clusters. Finally, their potential applications in telecommunication, light-emitting diodes and medical imaging are discussed.


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Hui Li ◽  
Goulven Quéméner ◽  
Jean-François Wyart ◽  
Olivier Dulieu ◽  
Maxence Lepers

Sign in / Sign up

Export Citation Format

Share Document